SRS+Timepix readout

Michael Lupberger

University of Bonn

RD51 Miniweek 10.12.2014, CERN

Outline

- Timepix Chip
- Small system
- Medium system
- What to do with it
- FEC6 experience

Timepix chip

Properties:

- active surface: $1.4 \times 1.4 \mathrm{~cm}^{2}$
- pixel size $55 \times 55 \mu \mathrm{~m}^{2}$
- 256×256 pixel array
- 14 bit counter in each pixel (ToA or ToT)
- Noise threshold $\sim 500 e^{-}\left(E N C \approx 90 e^{-}\right)$

SRS+Timepix: chain

Small system

Single Timepix chip or octoboard

Small system

Intermediate board with HDMI connectors

Small system

Intermediate board with HDMI connectors

12C DACs for multiplexer

LVDS \rightarrow CMOS converter

LVDS drivers

12C extender

Multiplexer for test pulses

I2C ADC

CMOS level shifter $2.5 \mathrm{~V} \rightarrow 2.2 \mathrm{~V}$

12C expander: generate CMOS signals

Small system

A card
2 Lemos to FPGA (e.g. for trigger and veto)

12C extender

LVDS drivers

I2C level shifter

LVDS drivers

2 HDMI cable plugs

Medium system

C Card on FEC6

universitätbonn
Michael Lupberger RD51 Miniweek

Medium system

3 FEC6 with C-Cards

Each FEC/C-Card: 5 HDMI plugs:
1 for slow control
1 per octoboard
=> 4 octoboards/ FEC

Up to 15 m HDMI

Medium system

3 FEC6 with C-Cards

Each FEC/C-Card: 5 HDMI plugs: 1 for slow control 1 per octoboard
=> 4 octoboards/ FEC

New intermediate board for 96 Timepix chips
universitätbonn

Medium system

Clock synchronisation using DTC link

Master FEC:
clk200 from oscillator Clk40 and clk 200 out

Slave FECs: Clk200 from Master CIk40 from clk200 Synchronise clk40 With clk40 from master

Trigger:
From NIM_in or DTC Slave \rightarrow Master

Medium system

Gigabit Ethernet switch

Software communicates with FECs by IP/MAC address

SFP used at each FEC

Medium system

Intermediate board for LCTPC module (96 chips on 12 octoboards) read out by 3 FECs

LCTPC Module

Testbeam 2015

- DESY: LCTPC Prototype: TPC for up to seven modules
- 1 fully and two partly equipped with Timepix chips
- 160 chips
- 5 FECs
- Need to borrow

Readout system

SRS C-Card + FEC6 in operation

- 1 design error found (powering of LVDS drivers) due to difference between FEC5 and FEC6
- 1 LVDS driver defect
- Development of firmware almost finished
- Test with one octoboard of naked Timepix chips connected to any one of the four slots
- Set DACs (FSR) in chip and read back chip ID $\sqrt{ }$
- Set matrix and read it back $\sqrt{ }$
- Zero suppressed readout $\sqrt{ }$
- Zero suppressed readout while sending data of last frame $\sqrt{ }$
- Software: needs extension for several FECs multithreaded
- Several FECs serail

Large system

ILD TPC with pixel readout

FEC 6 experiences

- Problems with powering at beginning
\rightarrow Confusion with production and 0Ω resistors
- Problems with Spansion memory
\rightarrow Confusion with memory size
- Problems with Jitter cleaner
\rightarrow not used after discussion with Raul
- NIM_out signal looks strange?
\rightarrow maybe change resistor in NIM_out network?
- Cooling seems to be sufficient
- FEC5/FEC6 compatibility: difficult for clock_in signals at PCI plug, VPIO3_3 not available any more

FEC6 works excellent!

Summary

Implementation of Timepix in SRS almost finished

- Small system verified at Testbeam 2013
- Medium size system
- Firmware almost finished
- Hardware ready
- Detector in preparation
- Testbeam in spring 2015

