

for 2015

Hans Muller CERN/RD51

(1) Electronics for R&D on detectors

- open, light and table-top
- Frontends according type of detector
- sparc protected for MPGD's
- affordable channel cost
- purchase from stock
- complete from frontend to offline
- both DAQ and Labview –like software
- standard detector plugin
- user community in RD51
- scalable from a few channels to a large system

(1) Electronics for R&D on detectors

- Hardware available via CERN store
- Firmware included
- Software via RD51

SRS frontend ASICSs

2009

2014

APV,128-ch. analogue
100% designed for RD51 SRS
HW and FW RD51 property
4 revisions
still going strong
about 2000 produced
distributed via CERN store

EDA-02075-V4 RD51 APV25

Export restrictions!

Letter of compliance regired

VFAT,128 ch digital designed by RD51 excessive noise in V1 xferred to CMS

Beetle: 128 ch analogue
Design RD51/WIS
production difficulties
with 4-layer bonding

..to be continued (ALICE /Focal)

VMM-2: 2x 64 ch digital HW and FW Mini2 design by RD51 under test by IFIN/ATLAS NSW -> talk by Sorin Martoiu

2014 SRS classic availability* at CERN

CERN store: edh.cern.ch ->stores icon -> Keyword: SRS

restricted access to APV hybrids (country dependent)

SRS-Classic: FEC and Adapter cards

FEC-V6 Virtex6 (in production)

Digital adapter (16 digital channels) for digital ASICs like VMM

CERN store 2010-14

New: CERN store 2015+ CERN store 2010-15 New: CERN store 2015

SRS Classic crates

Minicrate AB, max 2 FEC

Note: both crates must NOT be operated in magnetic fields
Revised versions with B-field immune bucks planned for 2015

Eurocrate 4 or 8 FECs

Scalable Readout Unit (SRU)

SRU is more than an Ethernet switch:

- -Low latency clock distribution (default TTC)
- -slow controls fanout from Online PC
- -NIM/LVDS interface for trigger, clock and Busy

Features:

Rack-mountable

24 x switch for SRS FECs

24 x DTCC (Data, trigger Clock Control)

FPGA based (Virtex-6)

10 GBE Ethernet to DATE/Online

2 GB optional Data buffer

1 TTCrx input for LHC clock and Trigger

4 NIM in / 4 NIM out

4 dfferential LVDS in/out

3 SFP ports 3Gbps

DC power from SRS-Crate

ALU chassis for use in magnetic field

More than 60 SRU's built

Online / offline software* DATE / SRS-amore

DATE Online system

More on DATE installation and use:

"Totem Readout using the SRS" Adrian Fiergolski, Michele Quinto RD51 E-School, 3rd of February 2014

- Trigger rate at flat top ~25kHz**
- Readout bandwidth close to the link limit 118MB/s
- System stability over more than 140M events
- None of the event has been lost

**this is an order of magnitude faster than the previous VME based system

More on Offline Analysis via SRSamore:

Monitoring APV25-SRS Electronics with amoreSRS RD51 Electronics School, Feb 3-5, 2014 Kondo Gnanyo

 The use of DATE by RD51 members is based on a Memorandum between ALICE DAQ team and RD51 DATE users are deemed to know and obey the content of this Memo

Labview SRS* for small system tests

More on AVP readout via Labview DAO Electronics School, Feb 3-5, 2014

Sorin Martoiu

More on "detector signal readout with APV and SRS" LabVIEW-Based SRS Data Acquisition System Riccardo de Asmundis Electronics School, Feb 3-5, 2014

^{*}RD51 electronics school 2014 http://indico.cern.ch/event/283113/

SRS laboratory peripherals

Utility devices like:

- -monitoring of current, voltage, temperature, humidity, pressure
- -signal pickup / trigger adapters /NIM logic
- -HV generator / regulator
- -Picopulser etc

Some of these work stand alone, others can be read out and controlled via remote I2C cables to SRS

Femtometer 1.2*

for MPGDs

Main features

10fA – 1uA in 2 ranges
Battery powered
Moving coil or analogue output
overload protected
Internal calibration sources
(-) and (+) inputs
GigaOHM meter scale
Configurable also as CSA,
electrometer and TIA

3 Femtos built so far 2015 revision to include SRS interface

^{*}user manual: https://dl.dropboxusercontent.com/u/31352454/FEMTO%20box%20User%20manual.pdf

Active Voltage Divider for GEMs G-AVD

1 Prototybe built

Inside AVD

Top: Active Voltage Divider board

Bottom: Voltage and Current monitoring board

Main features of prototype

"constant current" resistor divider compensated electrode currents via active bypass External -HV supply to deliver bypass currents GEM fields configuarable via resistor chain as before GFM sector short circuit safe Prompt current monitor output Readout via SRS cable

2015 Revision list:

Up to 4 GEM stack each with 4 sector outputs up 50Watt (10 mA @ 5 kV) compensation current GEM Voltage monitor on all top electrodes Femto-like current monitor output

Trigger Pickup box (TPIC)

10 TPIC Boxes in preparation

Final commissioning going on

Feature list

pick up dQ/dt from grid or mesh
Up +/- 5 kV
amplify via a charge sensitive pream (CSP)
50 OHM Trigger/ Timing output
Overvolt / sparc protected

Inside TPIC

Some SRS based experiments

TPC readout at **NEXT**

Jose F. Toledo Alarcon, Electronics School, Feb 3-5, 2014

Upgrade for SBS GEM readout at **JLab**

Kondo Gnanvo RD51 Miniweek june 2014

http://indico.cern.ch/event/323839/other-view?view=standard

ATLAS NSW MicroMega readout via SRS

Andre Zibell, Electronics School, Feb 3-5, 2014

Timepix readout via SRS

Michael Lupberger -> see talk today

Status of the SRS integration into the

TOTEM DAQ System

Michele Quinto et al. RD51 Miniweek June 2014

http://indico.cern.ch/event/323839/other-view?view=standard

Data transfer performance of SRS

(J-PARC E16 Experiment)

Yuhei Morino Collaboration meeting CERN Feb 2014 http://indico.cern.ch/event/283108/other-view?view=standard

Update on the BNL SRS readout

and analysis system

M.Purschke https://indico.cern.ch/event/179611/timetable/#20121002

Plans for SRS at ELI (Extreme Light Infrastructure)

Sorin Maroiu Collaboration meeting CERN Feb 2014 http://indico.cern.ch/event/283108/other-view?view=standard

More ad-interim SRS users

(presentations invited)

GEMs for CMS project T2DM2 CRNS project

.... etc

(2) Electronics for Experiments

- Multichannel systems up 10^{7 ch}
- Certified crate / rack standards
- Experiment-defined frontend ASICs choice
- Power from an existing DC infrastructure
- Surge, overvoltage and polarity immunity
- Electronically fused
- Operation in magnetic fields
- Radiation tolerant
- Operational in areas of limited access or partially harsh environments
- Remote reset from a safe boot device
- Data, clock and controls transmission over distance (optical fibres)
- Minimal scope of contact failures
- Full integration in standard DAQ software and offline Analysis
- Channel cost => system cost

SRS-ATCA crates, blades, mezzanines and RTMs

More: see talk by Friedrich Fix Eicsys today

LHC experiments: from detector to counting room

Towards "Optical SRS"

OCx: Optical-Copper Junction box for SRS frontends

ORx: Optical Receiver mezzanines for xTCA

- Extension of SRS readout architecture over distance
- Readout of spatially distributed detectors
- Operation in magnetic fields
- Mezzanine adapters for OCx depending on Application (analogue, digital etc)
- Mezzanine adapters for ORx integrate fibre optics receivers
- OCx Operation close to points of high radiation (copper links to detector hybrids)
- Power via 2-wire unregulated DC 10-15 V (max 120 W)

OVERVIEW Optical SRS for distributed systems

ORx mezzanines ATCA Firefly **Light*** mezzanine

Note: the Firefly connectors allow also be used for micro coax Firefly plugins

Power connector for OCx

12 or 24 bidir. Optical links up 3k APV channels per link

MPO / MTP on frontpanel MM OM3 fibre 1 x FPGA

....Looking for 2015 design resources

*High density ORx mezanine -> talk by Sorin Martoiu

Aggregation of OCx fibre links

via MTP/MPO parallel optical connectors on an ATCA-ORx

ORX (FireFly) mezzanines on ATCA blade: 24 optical channels per mezzanine

MTP is like MPO but more reliable

ATCA blade with 24 fibre concentrator*

1 Virtex 6 dedicated to 1 ORx mezzanine

OCx: Optical-Copper Junction box

remote SRS readout and power

via fibre or copper

OCx be used stand —alone with a Laptop connected via GBEthernet

OCx box works in moderate magnetic fields < 0.5 T Powers up to 3 k channels (APV or VMM chips on detectors) Implements safe boot from backed- up Flash Accepts ATCA mezzanines with copper links to frontend Accepts SRS classic mezzanines (ADC-DCARD) via adapter Transmits and receives data via DTCC protocol 1 Gbit or 10 Gbit Ethernet for direct readout

Frontside HDMI connections

HDMI plugs

-connect directly to Frontend hybrids

-power for hybrids included as before

Banana plugs 3 Power Groups a,b,c

GND: cable to detector hybrids

U1: 4 mm Banana plugs, fused

U2: 2 mm Banana plugs, fused

Adapter for "Classic SRS" card

OCx internal

FPGA and cooler bottom side

Status OCx

Hex Buck board, Altium design finalizing (Alexandru Rusu)

Inner Frame 3D assembly and partlist (final) (Hans Muller)

FPGA board and thermal studies

- 1.) Base board 1 Gbit, schematics started
- 2.) High end board 10 Gbit and RLDRAM buffer (Jose Toledo)

OCx prototyping

- 10 OCx box Prototypes by February
- Green light for Box cutouts and inner frame production
- Component purchase well advanced
- Buck PCB order next week
- FPGA base board tbd

(3) Electronics for Research + Industry

- Complete solutions for labs or field environments
- Standard link interfaces (SFP, RJ45)
- Plug-in adapters for analogue and / or digital frontends
- Confirmed device features for target application
- Temperature and humidity control
- Electronically fused, short circuit safe
- Clear status indicators
- Solid and portable casings
- Battery- or ACDC power packs
- Industry-standard connectors / cables
- Verified / reliable user manuals
- Stand-alone operation
- Labview-like software
- Modular Firmware cores with custom extensions

Portable stand -alone systems

Spatially distributed detectors

Online system for all detector channels PC in counting house

^{*} extendible distance with optical mezzanines like Firefly

Stand alone adapter power

Portable Box and flanch fixation

Bottom mounting flanch
M4 screws for heat extraction from inner frame

Rugged power

SRS roadmap

(1) SRS for R&D on detectors: 90% done SRS classic, Femtometer, TPIC, AVD, new & faster Frontends

2009-2015

(2) SRS for Experiments: 60% done ATCA-based SRS, SRU, new mezzanines

2014-2015

(3) SRS for Research in Industry: 25% done spatially distributed, locally powered OCxboxes existing and new peripherals

2015 +

Continued support by the RD51 community is needed