Resistive Micromegas Multigen 2D for Muon tomography

Simon Bouteille

 $\mathsf{CEA}/\mathsf{DSM}/\mathsf{Irfu}/\mathsf{SPhN}$

R&D-51 mini week, 9th December, 2014

Outline

- 1 MultiGen prototype
 Genetic multiplexing
 Detector overview
 Efficiency
 Capacitance studies
- Absorption tomography Principle First results WatTo experiment
- 3 Deviation tomography Principle PoCA reconstruction Likelihood reconstruction

Genetic multiplexing

- One particle : signal in multiple adjacent strips
- Identify n-uplet position is enough
- 1024 strips \rightarrow 61 electronic channels

Detector overview

- Dimensions : $50 \times 50 \mathrm{cm}^2$
- Resistive
- 2D: 2 perpendicular layer of readout strips
- Multiplexed

Detector overview

• Asymetry :

- Strips parrallel with resistive strips
- Strips perpendicular with resistive strips

At maximum gain

- At maximum gain (amplification field : $\sim 4\cdot 10^6~{
 m Vm^{-1}})$
- Cosmic bench configuration :
 - 3 2D tracking detectors
 - 1 2D tested detector
- Clustering consideration
 - Noise in strips perpendicular wrt. resistive strips
 - 1 strip without signal allowed in clustering

- Efficiency of the perpendicular coordinate :
 - Before correction: 96%
 - After correction: 97%

Capacitance studies

- Observations :
 - Multiplexing increase detector capacitance
 - Dream electronics (CLAS12)
 - Average S/B with protected chips (220 pF decoupling capacitor)
 - Poor S/B with unprotected chips
- Decoupling capacitor can be optimized to miximise S/B
 - AGET/Feminos electronics (MINOS)
 - ullet Different capacitor for each chip (from $220~\mathrm{pF}$ to $2~\mathrm{nF}$)
 - Data taking : finished
 - Analysis: in progress

Outline

- 1 MultiGen prototype
 Genetic multiplexing
 Detector overview
 Efficiency
 Capacitance studies
- Absorption tomography Principle First results WatTo experiment
- 3 Deviation tomography Principle PoCA reconstruction Likelihood reconstruction

Principle

- Flux measurement
- Reconstruction :
 - Flux difference between 2 runs
 - Substraction of acceptance effects
 - Comparison with simulations
- Easy to setup
- Poor resulution : \sim 1 muon out of 100 are stopped by $10~\mathrm{cm}$ of lead
- High acquisition time

Principle

- Suited to study large objects
- Applications :
 - Volcanology
 - Mining exploration

DIAPHANE project (IPGP, IPNL)

First results

- Cosmicbench :
 - $50 \times 50 \text{cm}^2$ detectors
 - 6 1D layers
- 10 cm thick lead bricks
- 2 days of data (trigger rate : \sim 6 Hz)

WatTo experiment

- Start date : march-april 2015
- Saclay's watter tower tomography
- 3-4 Multigen 2D telescope
- 45° inclination
- Why ?
 - Test the detector outside
 - Test the electronic outside
 - Test low consumption HV modules
 - Test on battery power
 - Test image quality versus time of acquisition

WatTo experiment

Simulations:

 Monitoring of the water height

Tank without water

Tank full of water

Outline

- MultiGen prototype
 Genetic multiplexing
 Detector overview
 Efficiency
 Capacitance studies
- Absorption tomography Principle First results WatTo experiment
- 3 Deviation tomography Principle PoCA reconstruction Likelihood reconstruction

Principle

- Multiple scattering
- $\begin{pmatrix} x \\ \theta \end{pmatrix}$ measurement at both end
- 3D image
- More information used wrt. absorption tomography
- Reduce acquisition time
- Need a model for reconstruction
- No real data results at the moment

PoCA reconstruction

- Simplest reconstruction
- Point Of Closest Approch
 - middle of shortest segment between incoming trajectory and outgoing trajectory
- Acceptance effect sensitive
- Lot of non-used information
- Density map is the PoCA distribution

Likelihood reconstruction

- Based on maximum likelihood method
- Deviation angle distributed on a gaussian
 - $\sigma_{\theta} \propto 1/\rho$
- Each muon contribute to the density of every voxel he passes through
 - Proportionnal to the deviation Δx inside the voxel
 - Inversely proportionnal to the path length inside the voxel

