CMS GEM H4 Test Beam Update

Brian Dorney

On behalf of the CMS GEM collaboration

CMS GEM H4 Campaign: Original Plan

- Originally targeted six detectors:
 - GE1/1-IV irradiated at GIF
 - GE1/1-IV not irradiated
 - GE1/1-V
 - GE1/1-III with multi-channel power supply
 - GE1/1-III with CMS 2016 slice test electronics
- Operating conditions:
 - Ar/CO2/CF4 (45/15/40)
 - Gain scanned from O (10²) to O (10⁴)
 - Muon beam (150 GeV)
- Main goals:
 - Detection efficiency vs HV
 - Time resolution (time efficiency) vs HV
 - Spatial resolution vs HV
 - Performance of CMS GEM superchambers
 - Repeated at three different (η,φ) sectors

Current Status

- Five detectors (hopefully six):
 - GE1/1-IV irradiated at GIF
 - GE1/1-IV not irradiated
 - GE1/1-IV not irradiated from INFN:LNF (Frascati)
 - GE1/1-V
 - Hope to install post scrubbing period
 - GE1/1-III with multi-channel power supply
 - 10x10cm2 triple-GEM detector with multi-channel power supply
 - GE1/1-III with CMS 2016 slice test electronics
- Operating conditions:
 - Ar/CO2/CF4 (45/15/40)
 - Muon & pion beams (150 GeV)
- Despite setbacks we have completed 2 out of 3 (η,φ) sectors for three of the GE1/1 detectors
 - Hope to finish final sector after scrubbing period

Experimental Setup

Measurement Modes

- Asynchronous Mode
 - Triggers are not correlated with the clock

- Synchronous Mode
 - Triggers are correlated w/leading edge of the clock
 - i.e. LHC mode

Asynchronous Mode...

Triggers random w/respect to leading edge of clock

- Any triggers accepted regardless of clock position
- The random position of the trigger with respect to leading clock edge can cause an artificial change in latency

Triggers correlated with leading edge of clock

Triggers accepted only in a certain position of clock

DAQ Electronics - TURBO

- Controls up to 8 VFATs per TURBO
- Only capable of forwarding one SBIT signal out to rack
- Clock frequency: 40 MHz

- Master board controls multiple boards
 - Creates clock and sends via external cable to all boards
- Not possible to monitor clock created by master
 - Can only see forwarded clock signal from slave boards

DAQ Electronics - TURBO

- TURBOs allow performance measurements: Detection efficiency vs HV
 - Time resolution (time efficiency) vs HV
 - Spatial resolution vs HV
 - Performance of CMS GEM superchambers
- Data analysis on-going
- Full results comparison planned
 - Comparison with Ar/CO2 data (H2, Oct '14)
 - Comparison between different (η,φ) sectors (H4, now)

DAQ Electronics - SRS

- Multi-channel power supply potential HV system for CMS GEM LS2 installation
- 10x10cm2 triple-GEM chamber has been powered by two systems
 - Standard CAEN mainframe w/on-detector resistor divider
 - Multi-channel power supply
- Interested in studying any potential impact on detector performance by switching to multi-channel power supply

Summary

- Five detectors under beam
- Completed two-thirds of our measurement program
- Hope to install our GE1/1-V detector before beam is back on Wednesday evening
- Data analysis on-going!
- Many thanks to Eraldo and the rest of RD51 Collaboration for all your help and support!

Back - Up

Asynchronous Mode...

...Problem

