LAPP/Demokritos H4 setup

Sampling Calorimetry with Resistive Anode Micromegas (SCREAM)

Theodoros Geralis NCSR Demokritos

LAPP Annecy, France

C. Adloff, M. Chefdeville, Y. Karyotakis, I. Koletsou

NCSR Demokritos, Greece

G. Fanourakis, T. Geralis, A. Kalamaris, C. Kitsaki, D. Nikas, Ch. Vassou

CEA Saclay, France

M. Titov

University of Athens, Greece

Niki Saoulidou

RD51 mini week, 8 – 11 December 2014

Resistive Micromegas for Particle Flow Calorimetry

1) At future linear colliders

HCAL with 1x1 cm2 pads, high granularity for PF both in transverse and longitudinal direction, small sensitive area thickness (< 1cm)

→ Removes spark protection diodes from pcb, more cost effective

2) At HL-LHC (CMS)

Backing Hadron Calorimeter to complete the Si-ECAL + HCAL. Rate Capability, ageing, radiation tolerance, discharge attenuation.

Current activities

- 1) Design and explore a large range of resistivities
- 2) Optimization of the design in terms of response linearity and discharge protection
- 3) Micromegas studies with X-ray guns and at the RD51 test beam with muons (mips) and pions (also with absorber)

Near Future plans

- 1) Further optimize the design
- 2) Build a mini hcal prototype (50 x 50 cm2) with several layers of Micromegas + absorber

Shapes and values R1 Detectors for LAPP

Star

L_{eff} ~ 0.13 cm R(100 k/sq) ~ 400 kOhm R(1 k/sq) ~ 4 kOhm

Mirror

L_{eff} ~ 1.3 cm R(100 k/sq) ~ 4 Mohm R(1 k/sq) ~ 40 kOhm

Snake

L ~ 13 cm R (100 k/sq) ~ 40 MOhm R (1 k/sq) ~ 400 kOhm

Real values:

40 to 60 KOhms with $10K\Omega/Sq$ 400 to 750 KOhms With $100K\Omega/Sq$

Real values:

400 KOhms with $10K\Omega/Sq$ 4 MOhms With $100\Omega/Sq$

Real values:

4 MOhms with $10K\Omega/Sq$ 40 MOhms With $100\Omega/Sq$

Picture R/O with the first Coverlay pressed on

Gain for a Std bulk and the resistive Star, Mirror, Snake

Measured rates with absorbers → Scale factor for rates without abs

Micromegas production and tests at Demokritos

Variable resistivity Micromegas detectors with pads (VRM)

- Produced two detectors VRM5, VRM6 (delivered end of Sept.2014)
- VRM5 resistive paste: 10kOhm/sq (burried)., 100kOhm/sq. (surface)
- VRM6 resistive paste: 100kOhm/sq(burried), 100kOhm/sq. (surface)
 - 3 vertical slices of the same burried resistors values
 - 4 horizontal slices of the same surface resistivity
 - → 12 different resistivity areas

Resistive Micromegas production and tests

VRM5 Resistivities layout

Tests at Demokritos X-ray tube: Rh - L line at 3 keV Rate up to 11 MHz/cm²

Optimize for linearity in response

Rate Corrections for the Dead Time

- m: measured rate
- α,**β**: Linearity coefficients
- τ: Readout Dead Time
- $R=(\alpha I + \beta)$: True Rate

- $\geq \alpha = 3030 \text{ MHz/mA}$
- $> \tau = 264 \text{ ns}$
- > β=0

Discharges: measure Voltage drop at high rate (11 MHz/cm²) during 5 h. Record spectrum form V>8mV (Raether limit)

Best response in linearity \rightarrow Region 3-1 ($R_{burried} = 1.6 \text{ M}\Omega$, $R_{surface} = 6 \text{ M}\Omega$)

- → Build one more Micromegas with uniform resistivity → **Spider**
- → Installed in the Test Beam setup during the second week

LAPP/Demokritos H4 Test Beam setup

VME Readout (Gassiplex), Monitor HV with RD51 system

9/12/2014

Beam profile with pions at low rate (2kHz)

Beam profile with pions at high rate (400kHz)

Efficiency and Hit Multiplicity vs Gain

ADC vs time in spill with pions at low rate (2kHz)

ADC vs time in spill with pions at high rate (400kHz)

Mesh current with pions at high rates (2kHz - 400 kHz)

Landau distribution for mips

$N_{\rm hits}$ vs time in spill with pions at low rate (2kHz)

N_{hits} vs time in spill with pions at high rate (400kHz)

24

Conclusions and Plans

During the test beam period we have completed:

- 1) Study of our detector with mips (Landau)
- 2) Efficiency measurements
- 3) High rate scans at medium gain
- 4) Spark rate
- 5) High rate scans with Fe absorber
- 6) Spark rate with Fe absorber (not presented)

Remaining

- 1) Pion energies scan at different gains
- 2) Rate scan at different gains

Many THANKS to Rui and Antonio For their great job

Many THANKS to Eraldo and Yorgos
For their help and support in the RD51 X-ray gun tests
and the RD51/H4 Test Beam

BACKUP

Backing-HE Geometry(V4)

Backing HGCAL 20 Layers 10 Sampling Layers

18 x 10° Identical φ – Sectors / Layer

20 Layers x 18 Sectors

- \rightarrow 150 m² / end cap
- → Total Detector Surface: ≈300 m²
- → 36 Identical φ Sectors x 10 Layers
- → 720 detectors of about 0.4 m²
 Gap in V4 geometry ~9mm
- → 0.35 0.75 Million channels (depending on the pad size:2x2 cm² - 3x3 cm²)

