RD51 mini week, 8 – 11 December 2014

Photon Detection in an MWPC

Eraldo de Sales

Universidade de São Paulo-BR

Advisor: Prof. Dr. Cristiano L. P. de Oliveira

Universidade de São Paulo-BR

Sketch of Detector

X-rays Attenuation

 μ is the linear attenuation coefficient; \mathbf{x} is the thickness of the absorber.

G. F. Knoll, Radiation Detection and Measurement, John Wiley and Sons, New York, Chicester, Brisbane, Toronto, Singapure, 3rd ed. (2000).

Mass Attenuation Coefficient

$$\mu = \mu(E, \rho) \longrightarrow \mu_m = \frac{\mu}{\rho} \longrightarrow \mu_m = \mu_m(E)$$

$$[\mu_m] = \frac{cm^2}{g}$$

$$I = I_0 e^{-\mu x} \quad \longrightarrow \quad I = I_0 e^{-\mu_m \rho x}$$

Mass Attenuation Coefficient for Mylar

Obtained from NIST (National Institute of Standards and Technology)

Mylar

	(required) Photon Energy	Scattering			Pair Production		Total Attenuation	
Edge		Coherent	Incoherent	Photoelectric Absorption	In Nuclear Field	In Electron Field	U With Coherent Scattering	Without Coherent Scattering
	MeV	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g
	1.000E-03	1.189E+00	1.284E-02	2.909E+03	0.000E+00	0.000E+00	2.911E+03	2.909E+03
	1.500E-03	1.075E+00	2.570E-02	9.525E+02	0.000E+00	0.000E+00	9.536E+02	9.526E+02
	2.000E-03	9.509E-01	3.982E-02	4.196E+02	0.000E+00	0.000E+00	4.206E+02	4.196E+02
	3.000E-03	7.237E-01	6.658E-02	1.280E+02	0.000E+00	0.000E+00	1.288E+02	1.280E+02
	4.000E-03	5.532E-01	8.816E-02	5.401E+01	0.000E+00	0.000E+00	5.465E+01	5.410E+01
	5.000E-03	4.339E-01	1.043E-01	2.738E+01	0.000E+00	0.000E+00	2.792E+01	2.749E+01
	6.000E-03	3.507E-01	1.162E-01	1.561E+01	0.000E+00	0.000E+00	1.608E+01	1.573E+01
	8.000E-03	2.473E-01	1.322E-01	6.370E+00	0.000E+00	0.000E+00	6.750E+00	6.502E+00
	1.000E-02	1.877E-01	1.426E-01	3.151E+00	0.000E+00	0.000E+00	3.48 +00	3.294E+00
	1.500E-02	1.111E-01	1.581E-01	8.626E-01	0.000E+00	0.000E+00	1.13: +00	1.021E+00
	2.000E-02	7.370E-02	1.662E-01	3.400E-01	0.000E+00	0.000E+00	5.79 01	5.062E-01
	3.000E-02	3.863E-02	1.720E-01	9.032E-02	0.000E+00	0.000E+00	3.009E-01	2.623E-01
	4.000E-02	2.356E-02	1.718E-01	3.500E-02	0.000E+00	0.000E+00	2.304E-01	2.068E-01
	5.000E-02	1.583E-02	1.695E-01	1.673E-02	0.000E+00	0.000E+00	2.020E-01	1.862E-01
	6.000E-02	1.135E-02	1.663E-01	9.141E-03	0.000E+00	0.000E+00	1.868E-01	1.754E-01

Transmission in Mylar Window

For our Mylar window (190 μ m) a transmission about 63% to ⁵⁵Fe source is expected.

Transmission on Entrance Window

Mylar: Density=1.4 g/cm³, Thickness=190 microns

Data from Henke: http://henke.lbl.gov/optical_constants/gastrn2.html

From Henke, the transmission is basically the same (~62%).

Photo-absorption in Gases

For ⁵⁵Fe source the absorption in argon is about 40%.

Absorption of Photons from ⁵⁵Fe Source

X-Ray starts at (0, 0.02, 0.04) and goes to (0, 0.02, 10) [cm].

Absorption of Photons from ⁵⁵Fe Source

Probability of interaction in Z-axis.

Probability of absorption as a function of channel.

Signals

Induced signal by drift of just one electron.

Grids on Garfield

Before coming to CERN (and discuss with Rob)...

I used the function rows to create the wires of the detector:

This function is not able to calculate electric field for perpendicular wires!

Grids on Garfield

• Now...

Periodic Copies using NEBEM.

Summary

- We estimate the transmission of photons in gas and entrance window using data from NIST and Henke;
- Simulated absorption of photons from a ⁵⁵Fe source in gas;
- We were able to get induced signals by drift charges in MWPC.

Many thanks to Rob Veenhof (Garfield support), Leszek Ropelewski (trainee stage opportunity), Eraldo Oliveri and Filippo Resnati for help.

Thank you for attention!