The B — K=¢¢ distribution at low hadronic recoil.
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@ The B — Krt¢decay is |Ag| = |Ag| = 1 Flavour Changing Neutral Current
(FCNC) processes and therefore sensitive to New Physics(NP).

@ At LHCb with 36~ luminosity, significant numbers(~ 3K) of B — K7¢¢ events
will be produced.

@ B — K/t contributes as background to B — K*(— K)¢X.



Theoretical Framework

The operator basis for |Ag| = |Ag| = 1 rare decays is
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the transversity amplitudes to the lowest order OPE in 1/my,
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short-distance coefficients
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[DD/Hiller/Jung/Shires JHEP 1409, 109 (2014), Béer/Feldmann/Dyk 1410.2115]



Theoretical Framework

Generalized transversity form factors
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Theoretical Framework

Generalized transversity form factors
Folq?,p?, cosOx) = Fo(q%,p?, cosOx) + Z P})R (cosbk) - FOJR(qz,p2) ,
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[DD/Hiller/Jung/Shires JHEP 1409, 109 (2014)]

The transversity form factors for B — K (¢ decay are
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[DD/Hiller/dung/Shires JHEP 1409, 109 (2014), Lee/Lu/Wise, Phys. Rev. D46, 5040]

Form factors w (q2, p?, cos 05 ) and h(q?, p?, cos @) are known form heavy hadron
chiral perturbation theory (HHxPT) calculations. In terms of HHxPT coupling constant
g, to the lowest order in 1/my,

we ~ g, h~g?  g=0.569+0.076 [Flynn etal, arXiv:1311.2251]



Theoretical Framework

Generalized transversity form factors
Folq?,p?, cosOx) = Fo(q%,p?, cosOx) + Z P9R (cosOk) - Foyn(d® p%),
R

P}R (cosOk)

Fi(q?,p?, cos ) = Fi(¢%,p%, cos Ok ) + Z CFign (0%, i=|, L.

sin9K

[DD/Hiller/Jung/Shires JHEP 1409, 109 (2014)]

Flo,|I,1)75 are the polarization dependent form factors for a resonance with spin Jg.
For B — K*¢¢ decay these are

Fop(a?,p%) =—3fo(q?) BWik+(p?) k", Fyp(q*,p?) *3\/7f\| (¢*) BWi+ (p?) K"

Fip(d®,p%) \fn ) BWk« (p%) €K .
fo.,(¢*) are the B — K* transversity form factors

[Bobeth/Hiller/Dyk JHEP 1007 (2010) 098]



Angular Distribution at Low recoil

The B — Kn#¢ angular distribution in terms of angles 6;, 0, ¢

9
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d°r = o |:E ci(Ol,¢)Ii(q2,p2,0059K)} dq?dp?d cos O d cos 4d .
™
i=1

[Bobeth/Hiller/Piranishvili JHEP 0807, 106]
The angular coefficients I;(q2, p?, cos 05 ) are given in terms of Fo,|,L and p's
The long- and short-distance contributions factorize in the angular coefficients I;.

In the SM basis there are only two universal short-distance coefficients p1 2.
—possibility to construct observables sensitive to electroweak physics only
—possibility to probe the relative string phase ¢ x =

[DD/Hiller/Jung/Shires JHEP 1409, 109 (2014)]



Kinematics and Angular Distributions: S+P+D angular projection

P =1(cos 0)

o 202 2y ie K

Fo =3 an(a®p*) P"~(cos ) , Flj = > af(a®,p7) =,

=0 =1 sin e
P=1(cos 0)
— £ (g2, p? £
Fu=3 al(¢*p") < o—
=1 K
i 1.0
10 &
—_— 038

0.8

B _ __ 06

S s 0.6 %

E E o % 0.4

; < O o2

ﬁ‘o 'To 0.2 P

L B S o0 T R®
. L = o0 /S T FoS+P)

_______ -02 — — Fo(S+P+D)

-0.2 "
o ~0.4

-1.0 -0.5 0.0 0.5 1.0
cosfk

Figure: The first few angular coefficients a! (left i = 0, middle i =||) of the non-resonant form
factors F3, for central values of the input parameters at p? = mi*. The blue dotted, black solid
and red dashed lines correspond to S, P and D coefficients, respectively. In the plot to the right the
form factor Fy is shown at p? = m?%.. and ¢®> = 18 GeV? in S (blue short-long dashed), S+P

(green dotted) and S+P+D (red dashed) approximation, together with the full result (solid black
curve).



Kinematics and Angular Distributions: S+P+D angular projection
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[DD/Hiller/Jung/Shires JHEP 1409, 109 (2014)]
For B — K*¢¢ decay, only the coefficients Ji acc, J1,2ss, J3,6,0 and Ja_g. appear .
i) no S-wave contribution to I3 6 9.

i) The D-wave contributions to I3 6,9 can be separated from the pure P-one by an
angular analysis.

iii) separation of S- and D-wave contributions to I; > need sideband subtractions.

iv) S-P and D-P interference to I4 57,8 can be separated from the pure P-wave
contribution by angular analysis.
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Phenomenology of non-resonant B — K¢/ decay

—full non-resonant phase space: p2,;,, = (mx +mx)? < p? < (mp — v/q2)?
—P-wave ‘signal’ window: 0.64GeV? < p? <1GeV?
-S+P-wave ‘total’ window: p2 ;< p? < 1.44GeV?
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[DD/Hiller/Jung/Shires JHEP 1409, 109 (2014)]
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Phenomenology of non-resonant B — K¢/ decay

comparison of non-resonant B — Kr£¢ and resonant B — K¢ as background to
B — K*et

0.20

Figure: Left: R = (dB(B — Kmtt)/dq?)/(dB(B — K*££)/dq?) in the SM basis for the three
p?-regions of interest. Left: B B
Ry = (dB(B — (K;(1430) + £(800))£¢)/dq?)/(dB(B — K*¢£)/dq?) for the resonant

S-wave contributions in the SM basis for the three p?-cuts.

[DD/Hiller/Jung/Shires JHEP 1409, 109 (2014)]

the non-resonant B — Kn¢¢ constitutes the dominant background to B — K*#¢
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Non-resonant contributions to B — K*
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Figure: The fraction of resonant B — K*¢¢to B — Kn¢( double differential branching ratios in
the standard model as a function of ¢2. The denominator includes contributions form the resonant
B — K*¢¢, non-resonant B — K r¢¢ and their interference. The distributions are shown in
P-wave signal window and S+P-wave total window and for different values of the relative strong
phase §y« = —7/2,0,7/2, 7.

[DD/Hiller/Jung]

12/17



Non-resonant contributions to B — K*¢¢ decay
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Figure: The ratios of the angular coefficients resonant B — K *¢¢ to that of B — K (¢ decay in
the standard model. The later contains contributions from resonant and non-resonant modes and
their interference. The distributions are shown in P-wave signal window and S+P-wave total window

and for different values of the relative strong phase, §+ = —7/2,0,7/2, 7.

[DD/Hiller/dung]  13/17



Non-resonant contributions to B — K*¢¢ decay
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Non-resonant contributions to B — K*
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Figure: The ratios of B — K m£¢ angular coefficients as a function of the relative strong phase
d ¢+ in P-wave signal window and S+P-wave total window.

[DD/Hiller/Jung]
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—Phenomenological results for B — K¢/ decay at low hadronic recoil are
presented.

—Non-resonant B — K¢/ is dominant background to B — K*/¢.
—We have studied the impact of B — K#n¢f on B — K*¢£
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