# $B^0 - \overline{B}^0$ mixing beyond factorization: three loop QCD SR analysis

### Alexei A. Pivovarov with Andrey Grozin and Thomas Mannel

Siegen University

4th QFET meeting Dec 08, 2014







Gauge interaction of  $U_i = (u, c, t)$  and  $D_j = (d, s, b)$  with *W*-bosons includes CKM matrix  $V_{ij}$ 

 $V_{ij} \cdot ar{U}_i \gamma_\mu D_j W^\mu$ 

Nonvanishing off-diagonal elements of  $V_{ij}$  initiate transitions between flavors

b 
ightarrow c,  $b \leftarrow s$ , s 
ightarrow u,  $c \leftrightarrow d$ , ...

 $\Delta F = 2$  transitions: mixing of different flavor mesons

 $sd: K^{0} - \bar{K}^{0}; \quad cu: D^{0} - \bar{D}^{0}; \quad bd, bs: B^{0} - \bar{B}^{0}$ 

is important for CP violation studies

## $B^0 - \bar{B}^0$ mixing phenomenology

Evolution of  $(B^0, \overline{B}^0)$  system is described

$$irac{d}{dt}\left(egin{array}{c}B^{0}\ ar{B}^{0}\end{array}
ight)=H_{eff}\left(egin{array}{c}B^{0}\ ar{B}^{0}\end{array}
ight)$$

with  $H_{eff}$  being a 2  $\times$  2 matrix

$$H_{eff} = (M - i\Gamma/2)_{ij}, \quad i,j = 1,2$$

Non-diagonal elements  $M_{12}$  and  $\Gamma_{12}$  are effective  $\Delta B = 2$ interactions: calculable in SM. Observables of  $B^0 - \overline{B}^0$  system: mass difference:  $\Delta m = M_{heavy} - M_{light} \approx 2 |M_{12}|$ decay rates difference:  $\Delta \Gamma = \Gamma_L - \Gamma_H \approx -2 |\Gamma_{12}| \cos \Phi, \Phi = \arg(-M_{12}/\Gamma_{12})$ 



At quark level  $\Delta B = 2$  processes go through a box diagram that becomes a transition operator.

$$M_{12} = rac{G_F^2 M_W^2}{4 \pi^2} \left( V_{tb}{}^* V_{td} 
ight)^2 raket{ar{B}^0} |Q(\mu)| B^0 
angle$$

 $Q(\mu) = (\bar{b}_L \gamma_\sigma d_L)(\bar{b}_L \gamma_\sigma d_L)(\mu)$  – local four-quark operator

$$\Delta\Gamma\sim\Gamma_{12}=\langlear{B}_{s}|\mathcal{T}|B_{s}
angle/2M_{B_{s}}$$

Final states in decays are (c, u) "quarks",  $m_b \gg m_c, m_u$ and HQE in  $1/m_b$  is used

$$\langle ar{B}_s | \mathcal{T} | B_s 
angle = \sum_n rac{C_n}{m_b^n} \langle ar{B}_s | \mathcal{O}_n^{\Delta B=2} | B_s 
angle$$

 $C_n$  are calculable in PT. nonPT physics is contained in ME of local operators  $\mathcal{O}_n^{\Delta B=2}$ . At LO in  $1/m_b$  two four-quark operators are in  $\mathcal{T}$ 

$$Q = (\bar{b}_i s_i)_{V-A} (\bar{b}_j s_j)_{V-A}, \quad Q_S = (\bar{b}_i s_i)_{S-P} (\bar{b}_j s_j)_{S-P}$$

At NLO in  $1/m_b$  there are more.

Since  $Q_i \sim J \cdot J$  with  $J \sim \bar{s}b$  and  $\langle \bar{B} |'' ='' s\bar{b}$  it is prompting "to factorize" (vacuum saturation)

$$\langle ar{B}|Q_i|B
angle = \langle ar{B}|J\cdot J|B
angle = C_{
m comb}\langle ar{B}|J|0
angle\langle 0|J|B
angle$$

For  $J \sim \bar{b}_L \gamma_\mu d_L$ ,  $\langle 0|\bar{b}_L \gamma_\mu d_L|B^0(\mathbf{p})\rangle = ip_\mu f_B/2$ . Main problem: accuracy of such factorization Writting

 $\langle ar{B}_{s} | \mathcal{O}_{i} | B_{s} 
angle = B_{i} \langle ar{B}_{s} | \mathcal{O}_{i} | B_{s} 
angle^{ extsf{fac}}$ 

one introduces bag parameters  $B_i$  – QCD quantities controlling the accuracy of the factorization normalization  $B_i = 1$  in factorization approximation For relevant operators

$$\langle \bar{B} | Q | B \rangle = f_B^2 M_B^2 2 \left( 1 + \frac{1}{N_c} \right) B$$

$$\langle \bar{B} | Q_S | B \rangle = -f_B^2 M_B^2 \frac{M_B^2}{(m_b + m_s)^2} \left( 2 - \frac{1}{N_c} \right) B_S$$

$$\langle \bar{B} | R_2 | B \rangle = -f_B^2 M_B^2 \left( \frac{M_B^2}{m_b^2} - 1 \right) \left( 1 - \frac{1}{N_c} \right) B_2$$

$$\langle \bar{B} | R_3 | B \rangle = f_B^2 M_B^2 \left( \frac{M_B^2}{m_b^2} - 1 \right) \left( 1 + \frac{1}{2N_c} \right) B_3,$$

Main theoretical uncertainties of  $B^0 - \overline{B}^0$  mixing analysis are related to the ME of the local operators  $\mathcal{O}_i \in \{Q, Q_S, R_2, R_3\}$ , or the bag parameters  $B_i$ .

### Sum rules

Three-point correlator

$$T(p_1, p_2) = i^2 \int d^4x d^4y e^{ip_1x - ip_2y} \langle Tj(x)\mathcal{O}(0)j(y) \rangle$$

 $\mathcal{O} \in \{Q, Q_S, R_2, R_3\}$  is a four-quark operator and *j* is interpolation current

 $j_5 = \bar{s}i\gamma_5 b$ 

The overlap

$$\langle 0|ar{s}i\gamma_5 b(0)|ar{B}(p)
angle = rac{f_B M_B^2}{m_b+m_s}$$

The dispersion relation

$$T(p_1, p_2) = \int ds_1 ds_2 rac{
ho(s_1, s_2, q^2)}{(s_1 - p_1^2)(s_2 - p_2^2)}$$

determines the spectral density  $\rho(s_1, s_2, q^2)$ 

1. Hadronic picture: *B*-meson pole plus continuum

 $\rho_{\rm AV}^{\rm had}(\boldsymbol{s}_1, \boldsymbol{s}_2) = f_B^2 \delta(\boldsymbol{s}_1 - \boldsymbol{M}_B^2) \delta(\boldsymbol{s}_2 - \boldsymbol{M}_B^2) \langle \bar{\boldsymbol{B}} | \boldsymbol{\mathcal{O}} | \boldsymbol{B} \rangle + \rho_{\rm AV}^{\rm cont}$ 

2. With QCD using OPE:  $\rho_i^{\text{OPE}}$  is a sum of a PT and a nonPT involving condensates.

The idea of QCD sum rules is to use duality

$$\int ds_1 ds_2 \, 
ho_i^{ ext{had}}(s_1,s_2) = \int ds_1 ds_2 \, 
ho_i^{ ext{OPE}}(s_1,s_2).$$





OPE diagrams fall into two categories

 $T(p_1, p_2) = T_{fac}(p_1, p_2) + \Delta T(p_1, p_2)$ The factorized part has the explicit form  $T_{abc}(p_1, p_2) = arr hearst \in \Pi(p_1) \Pi(p_2)$ 

 $T_{fac}(p_1, p_2) = \text{combconst} \times \Pi(p_1)\Pi(p_2)$ with  $\Pi(p_i)$  - a 2-point correlator. For V-A operators

$$T_{fac}^{
m AV}(p_1,p_2) = 2\left(1+rac{1}{N_c}
ight)\Pi^V(p_1)\Pi^V(p_2)$$

with

 $p^{\alpha}\Pi^{V}(p) = i \int dx e^{ipx} \langle Tj(x)\bar{b}\gamma^{\alpha}(1-\gamma_{5})s(0) \rangle.$ SR for the factorized piece  $T_{fac}$  yields B = 1. A sum rule for reads  $\Delta B = B - 1$ 

$$f_B^2 \Delta B e^{-rac{M_B^2}{M_1^2} - rac{M_B^2}{M_2^2}} = \int ds_1 ds_2 \Delta 
ho_{
m AV}^{
m OPE}(s_1, s_2) e^{-rac{s_1}{M_1^2} - rac{s_2}{M_2^2}}$$



At LO in pQCD the three-point function factorizes

$$T(p_1,p_2)=T_{\mathrm{fac}}(p_1,p_2), \quad \Delta T(p_1,p_2)=0$$

and

 $\mathcal{T}^{\text{LO}}(\boldsymbol{\rho}_1,\boldsymbol{\rho}_2) = \mathcal{T}^{\text{LO}}_{\textit{fac}}(\boldsymbol{\rho}_1,\boldsymbol{\rho}_2) = \text{const} \times \Pi^{\text{LO}}(\boldsymbol{\rho}_1)\Pi^{\text{LO}}(\boldsymbol{\rho}_2)$ 

Thus, *B* = 1.



NLO factorizable contributions are given by the product of two-point correlation functions

$$\Pi_{\rm NLO}^{f} = \frac{8}{3} (p_1.p_2) \{ \Pi_{\rm LO}(p_1^2) \Pi_{\rm NLO}(p_2^2) + \operatorname{symm}(p_1, p_2) \}$$

#### NonPT factorizable contributions: gluon condensate





Figure : Non-factorizable condensate contributions

T.Mannel, B.Pecjak, AAP, Eur.Phys.J. C71 (2011) 1607

Non-factorizable contributions. pQCD diagram:



PT non-factorizable contributions at NLO require the calculation of three-loop diagrams.

## Status and outlook

Known pieces

- ✓ 1-loop matching of QCD operators to HQET
- ✓ 2-loop anomalous dimensions in HQET
- ✓ Analytical expressions for 3-loop masters A.Grozin,R.Lee

We are doing now

- ✓ Computation of 3-loop correlators
- Reduction to masters (LiteRed package)
- $\checkmark$ ? Spectral densities for disp relations

Nearest future

- Cross-checks, RG analysis of correlators
- Writing down sum rules
- Performing phenomenological analysis (comparison to Lattice...)