$B^{0}-\bar{B}^{0}$ mixing beyond factorization: three loop QCD SR analysis

Alexei A. Pivovarov with
Andrey Grozin and Thomas Mannel

Siegen University

4th QFET meeting
Dec 08, 2014

Gauge interaction of $U_{i}=(u, c, t)$ and $D_{j}=(d, s, b)$ with W-bosons includes CKM matrix $V_{i j}$

$$
V_{i j} \cdot \bar{U}_{i} \gamma_{\mu} D_{j} W^{\mu}
$$

Nonvanishing off-diagonal elements of $V_{i j}$ initiate transitions between flavors

$$
b \rightarrow c, \quad b \leftarrow s, \quad s \rightarrow u, \quad c \leftrightarrow d,
$$

$\Delta F=2$ transitions: mixing of different flavor mesons

$$
\text { sd : } K^{0}-\bar{K}^{0} ; \quad c u: D^{0}-\bar{D}^{0} ; \quad b d, b s: B^{0}-\bar{B}^{0}
$$

is important for CP violation studies

$B^{0}-\bar{B}^{0}$ mixing phenomenology

Evolution of $\left(B^{0}, \bar{B}^{0}\right)$ system is described

$$
i \frac{d}{d t}\binom{B^{0}}{\bar{B}^{0}}=H_{\text {eff }}\binom{B^{0}}{\bar{B}^{0}}
$$

with $H_{\text {eff }}$ being a 2×2 matrix

$$
H_{e f f}=(M-i \Gamma / 2)_{i j}, \quad i, j=1,2
$$

Non-diagonal elements M_{12} and Γ_{12} are effective $\Delta B=2$ interactions: calculable in SM.
Observables of $B^{0}-\bar{B}^{0}$ system:
mass difference: $\Delta m=M_{\text {heavy }}-M_{\text {light }} \approx 2\left|M_{12}\right|$ decay rates difference:
$\Delta \Gamma=\Gamma_{L}-\Gamma_{H} \approx-2\left|\Gamma_{12}\right| \cos \Phi, \Phi=\arg \left(-M_{12} / \Gamma_{12}\right)$

At quark level $\Delta B=2$ processes go through a box diagram that becomes a transition operator.

$$
M_{12}=\frac{G_{F}^{2} M_{W}^{2}}{4 \pi^{2}}\left(V_{t b^{*}}^{*} V_{t d}\right)^{2}\left\langle\bar{B}^{0}\right| Q(\mu)\left|B^{0}\right\rangle
$$

$Q(\mu)=\left(\bar{b}_{L} \gamma_{\sigma} d_{L}\right)\left(\bar{b}_{L} \gamma_{\sigma} d_{L}\right)(\mu)$ - local four-quark operator

$$
\Delta \Gamma \sim \Gamma_{12}=\left\langle\bar{B}_{s}\right| \mathcal{T}\left|B_{s}\right\rangle / 2 M_{B_{s}}
$$

Final states in decays are (c, u) "quarks", $m_{b} \gg m_{c}, m_{u}$ and HQE in $1 / m_{b}$ is used

$$
\left\langle\bar{B}_{s}\right| \mathcal{T}\left|B_{s}\right\rangle=\sum_{n} \frac{C_{n}}{m_{b}^{n}}\left\langle\bar{B}_{s}\right| \mathcal{O}_{n}^{\Delta B=2}\left|B_{s}\right\rangle
$$

C_{n} are calculable in PT. nonPT physics is contained in ME of local operators $\mathcal{O}_{n}^{\Delta B=2}$. At LO in $1 / m_{b}$ two four-quark operators are in \mathcal{T}

$$
Q=\left(\bar{b}_{i} s_{i}\right)_{V-A}\left(\bar{b}_{j} s_{j}\right)_{V-A}, \quad Q_{S}=\left(\bar{b}_{i} s_{i}\right)_{S-P}\left(\bar{b}_{j} s_{j}\right)_{S-P}
$$

At NLO in $1 / m_{b}$ there are more.

Since $Q_{i} \sim J \cdot J$ with $J \sim \bar{s} b$ and $\left\langle\left.\bar{B}\right|^{\prime \prime}={ }^{\prime \prime} s \bar{b}\right.$ it is prompting "to factorize" (vacuum saturation)

$$
\langle\bar{B}| Q_{i}|B\rangle=\langle\bar{B}| J \cdot J|B\rangle=C_{\text {comb }}\langle\bar{B}| J|0\rangle\langle 0| J|B\rangle
$$

$$
\text { For } J \sim \bar{b}_{L} \gamma_{\mu} d_{L}, \quad\langle 0| \bar{b}_{L} \gamma_{\mu} d_{L}\left|B^{0}(\mathbf{p})\right\rangle=i p_{\mu} f_{B} / 2 .
$$

Main problem: accuracy of such factorization Writting

$$
\left\langle\bar{B}_{s}\right| \mathcal{O}_{i}\left|B_{s}\right\rangle=B_{i}\left\langle\bar{B}_{s}\right| \mathcal{O}_{i}\left|B_{s}\right\rangle^{f a c}
$$

one introduces bag parameters $B_{i}-$ QCD quantities controlling the accuracy of the factorization normalization $B_{i}=1$ in factorization approximation

For relevant operators

$$
\begin{aligned}
\langle\bar{B}| Q|B\rangle & =f_{B}^{2} M_{B}^{2} 2\left(1+\frac{1}{N_{c}}\right) B \\
\langle\bar{B}| Q_{S}|B\rangle & =-f_{B}^{2} M_{B}^{2} \frac{M_{B}^{2}}{\left(m_{b}+m_{s}\right)^{2}}\left(2-\frac{1}{N_{c}}\right) B_{S} \\
\langle\bar{B}| R_{2}|B\rangle & =-f_{B}^{2} M_{B}^{2}\left(\frac{M_{B}^{2}}{m_{b}^{2}}-1\right)\left(1-\frac{1}{N_{c}}\right) B_{2} \\
\langle\bar{B}| R_{3}|B\rangle & =f_{B}^{2} M_{B}^{2}\left(\frac{M_{B}^{2}}{m_{b}^{2}}-1\right)\left(1+\frac{1}{2 N_{c}}\right) B_{3},
\end{aligned}
$$

Main theoretical uncertainties of $B^{0}-\bar{B}^{0}$ mixing analysis are related to the ME of the local operators $\mathcal{O}_{i} \in\left\{Q, Q_{S}, R_{2}, R_{3}\right\}$, or the bag parameters B_{i}.

Sum rules

Three-point correlator

$$
T\left(p_{1}, p_{2}\right)=i^{2} \int d^{4} x d^{4} y e^{i p_{1} x-i p_{2} y}\langle T j(x) \mathcal{O}(0) j(y)\rangle
$$

$\mathcal{O} \in\left\{Q, Q_{S}, R_{2}, R_{3}\right\}$ is a four-quark operator and j is interpolation current

$$
j_{5}=\bar{s} i \gamma_{5} b
$$

The overlap

$$
\langle 0| \bar{s} i \gamma_{5} b(0)|\bar{B}(p)\rangle=\frac{f_{B} M_{B}^{2}}{m_{b}+m_{s}}
$$

The dispersion relation

$$
T\left(p_{1}, p_{2}\right)=\int d s_{1} d s_{2} \frac{\rho\left(s_{1}, s_{2}, q^{2}\right)}{\left(s_{1}-p_{1}^{2}\right)\left(s_{2}-p_{2}^{2}\right)}
$$

determines the spectral density $\rho\left(s_{1}, s_{2}, q^{2}\right)$

1. Hadronic picture: B-meson pole plus continuum

$$
\rho_{\mathrm{AV}}^{\text {had }}\left(s_{1}, s_{2}\right)=f_{B}^{2} \delta\left(s_{1}-M_{B}^{2}\right) \delta\left(s_{2}-M_{B}^{2}\right)\langle\bar{B}| \mathcal{O}|B\rangle+\rho_{\mathrm{AV}}^{\text {cont }}
$$

2. With QCD using OPE: ρ_{i}^{OPE} is a sum of a PT and a nonPT involving condensates.

The idea of QCD sum rules is to use duality

$$
\int d s_{1} d s_{2} \rho_{i}^{\text {had }}\left(s_{1}, s_{2}\right)=\int d s_{1} d s_{2} \rho_{i}^{\mathrm{OPE}}\left(s_{1}, s_{2}\right) .
$$

Physical spectrum

OPE in QCD

OPE diagrams fall into two categories

$$
T\left(p_{1}, p_{2}\right)=T_{\text {fac }}\left(p_{1}, p_{2}\right)+\Delta T\left(p_{1}, p_{2}\right)
$$

The factorized part has the explicit form

$$
T_{\text {fac }}\left(p_{1}, p_{2}\right)=\text { combconst } \times \Pi\left(p_{1}\right) \Pi\left(p_{2}\right)
$$

with $\Pi\left(p_{i}\right)$ - a 2-point correlator. For V-A operators

$$
T_{\text {fac }}^{\mathrm{AV}}\left(p_{1}, p_{2}\right)=2\left(1+\frac{1}{N_{c}}\right) \Pi^{\vee}\left(p_{1}\right) \Pi^{\vee}\left(p_{2}\right)
$$

with

$$
p^{\alpha} \Pi^{V}(p)=i \int d x e^{i p x}\left\langle T j(x) \bar{b} \gamma^{\alpha}\left(1-\gamma_{5}\right) s(0)\right\rangle .
$$

SR for the factorized piece $T_{\text {fac }}$ yields $B=1$. A sum rule for reads $\triangle B=B-1$

$$
f_{B}^{2} \Delta B e^{-\frac{M_{B}^{2}}{W_{1}^{2}}-\frac{M_{B}^{2}}{M_{2}^{2}}}=\int d s_{1} d s_{2} \Delta \rho_{\mathrm{AV}}^{\mathrm{OPE}}\left(s_{1}, s_{2}\right) e^{-\frac{s_{1}}{W_{1}^{2}}-\frac{s_{2}}{M_{2}^{2}}}
$$

At LO in pQCD the three-point function factorizes

$$
T\left(p_{1}, p_{2}\right)=T_{\text {fac }}\left(p_{1}, p_{2}\right), \quad \Delta T\left(p_{1}, p_{2}\right)=0
$$

and

$$
T^{\mathrm{LO}}\left(p_{1}, p_{2}\right)=T_{\text {fac }}^{\mathrm{LO}}\left(p_{1}, p_{2}\right)=\text { const } \times \Pi^{\mathrm{LO}}\left(p_{1}\right) \Pi^{\mathrm{LO}}\left(p_{2}\right)
$$

Thus, $B=1$.

NLO pQCD gives

NLO factorizable contributions are given by the product of two-point correlation functions

$$
\Pi_{\mathrm{NLO}}^{f}=\frac{8}{3}\left(p_{1} \cdot p_{2}\right)\left\{\Pi_{\mathrm{LO}}\left(p_{1}^{2}\right) \Pi_{\mathrm{NLO}}\left(p_{2}^{2}\right)+\operatorname{symm}\left(p_{1}, p_{2}\right)\right\}
$$

NonPT factorizable contributions: gluon condensate

Figure : Non-factorizable condensate contributions
T.Mannel,B.Pecjak, AAP, Eur.Phys.J. C71 (2011) 1607

Non-factorizable contributions. pQCD diagram:

PT non-factorizable contributions at NLO require the calculation of three-loop diagrams.

Status and outlook

Known pieces
\checkmark 1-loop matching of QCD operators to HQET
\checkmark 2-loop anomalous dimensions in HQET
\checkmark Analytical expressions for 3-loop masters A.Grozin, R.Lee
We are doing now
\checkmark Computation of 3-loop correlators
\checkmark Reduction to masters (LiteRed package)
\checkmark ? Spectral densities for disp relations
Nearest future

- Cross-checks, RG analysis of correlators
- Writing down sum rules
- Performing phenomenological analysis (comparison to Lattice...)

