

# Neutrino mass measurements (single beta, double beta) in Europe

#### Andrea Giuliani

CSNSM - Orsay





## **Outline**

- > The neutrino mass scale
- Single beta decay and neutrino mass
- Double beta decay: isotope choice
- Double beta decay: experimental status in Europe
- Double beta decay: prospects towards 1 ton

## The absolute neutrino mass scale

Cosmology, single and double  $\beta$  decay measure different combinations of the neutrino mass eigenvalues, constraining the neutrino mass scale



## Direct v mass measurement

use 
$$E^2 = p^2c^2 + m^2c^2 \rightarrow m^2(v)$$
 is the observable

Use low Q-value beta-like processes and study endpoint of electron or  $\gamma$  spectrum



## **KATRIN**



#### **KATRIN**

#### Schedule and open issues

- Main spectrometer & detector successfully commissioned, still a bit too high background, but that is not the end of the story
- ➤ Tritium source and electron transport/tritium retention system on a good way
- Start regular data taking in 2016!
  - Cosmic rays natural radioactivity on spectrometer walls
  - Radon background in spectrometer volume

#### Both are now under control

Unknown origin of the **residual background**, which is 40 times higher than the objective (However, sensitivity to neutrino mass depends only on power 1/6 of the background rate)

#### sensitivity:

 $m_{v} < 0.2eV (90\%CL)$ 

#### discovery potential:

$$m_v = 0.3eV$$
 (3 $\sigma$ )

$$m_{\nu} = 0.35 eV$$
 (5 $\sigma$ )

In addition sensitive to eV and keV sterile neutrinos!

(MBB)

# **Decay modes for Double Beta Decay**

(A,Z) 
$$\rightarrow$$
 (A,Z+2) + 2e<sup>-</sup> + 2 $\nu_e$ 

2v Double Beta Decay allowed by the Standard Model already observed –  $\tau \sim 10^{18}$  –  $10^{21}$  y

(A,Z) 
$$\rightarrow$$
 (A,Z+2) + 2e<sup>-1</sup>

neutrinoless Double Beta Decay (0v-DBD) never observed (except a discussed claim)  $\tau > 10^{25} \text{ V}$ 

③ (A,Z) → (A,Z+2) + 2e<sup>-</sup> + 
$$\chi$$

Double Beta Decay with Majoron (light neutral boson) never observed –  $\tau > 10^{22}$  y



Processes ② and ③ would imply new physics beyond the Standard Model

violation of total lepton number conservation

#### Why is neutrinoless Double Beta Decay important

- Majorana mass term
- $\triangleright$  See-saw mechanism  $\Rightarrow$  naturalness of small neutrino masses
- Leptogenesis and matter-antimatter asymmetry in the Universe

## **Status**



## **Status**



Here and afterwards see F. lachello's talk  $g_A = 1.25$  (no quenching)

**Current-generation experiments** 



# **Current-generation experiments**



# **Strategic milestone**



## Strategic milestone



## Factors guiding isotope selection

Q is the crucial factor Background Phase space:  $G(Q,Z) \propto Q^5$ 









Excellent technologies are available in the source=detector approach:

- **>** Ge diodes ⇒  $^{76}$ Ge (GERDA, MAJORANA)  $\Delta$ E<<1%
- **>** Bolometers ⇒  $^{130}$ Te (TeO<sub>2</sub> crystals) (CUORE)  $\Delta$ E<<1%
- Dissolving the element (Te) in a large liquid scintillator volume (SNO+)
- ➤ TPCs (EXO, NEXT), inclusion in large volume of liquid scintillator (KamLAND-Zen) ⇒ <sup>136</sup>Xe

Enrichment is "easy" and for <sup>130</sup>Te not necessary at the present level

#### **BUT**

Less favorable in terms of background!





Almost background free isotopes!

**BUT** 

Low isotopic abundance and problematic enrichment (good news about Nd)

Better studied with source≠detector (tracko-calo approach) (SuperNEMO)

CaF<sub>2</sub> scintillators (and in principle bolometers) are interesting for <sup>48</sup>Ca (CANDLES)





**Experiment location** 



#### **GERDA**

**Technique/location**: bare enriched Ge diodes in liquid argon – LNGS (Italy)

**Source:** phase 1: Ge - 14.6 kg (coax) + 3 kg (BEGe) - <sup>76</sup>Ge enriched at 86%  $\rightarrow$  **1.2x10**<sup>26</sup> nuclides

phase 2: additional 20 kg  $\rightarrow$  **2.6x10**<sup>26</sup> nuclides

Sensitivity: phase 1: Klapdor's claim strongly disfavored; phase 2: 80 – 150 meV

**Timeline**: GERDA phase 1 is over; GERDA phase 2 is in preparation (data taking in fall 2015)



## GERDA – phase 2



Scale up to 1 ton

GERDA -

**MAJORANA** 

common effort

How to get a higher sensitivity for the Phase II:

- Phase II transition currently ongoing at LNGS
- increase mass: additional 30 enriched BEGe detectors (about 20 kg)
- reduce background by a factor of 10 w.r.t. GERDA Phase I:
  - by Pulse Shape Analysis (BEGe improved performance)
  - 2 by LAr scintillation light for background recognition and rejection

First commissioning data from Phase II in these days!

### **CUORE**

**Technique/location**: natural 988 TeO<sub>2</sub> bolometers at 10-15 mK– LNGS (Italy)

evolution of Cuoricino

Source:  $TeO_2 - 741$  kg with natural tellurium - 9.5x10<sup>26</sup> nuclides of <sup>130</sup>Te

**Sensitivity**: **51 – 133 meV** (5 years) – approach closely inverted hierarchy region

Timeline: first CUORE tower (CUORE-0) has completed successfully its physics run

full apparatus operational in 2015 – all 19 towers completed – cryostat under test



### **CUORE-0**

- First CUORE tower now operating in the former Cuoricino cryostat
- Excellent detector and background results
- Background substantially reduced with respect to Cuoricino
   Confirmation of the CUORE background target: 10<sup>-2</sup> counts/(keV kg y)





Combining results with Cuoricino

$$T_{1/2} > 4 \times 10^{24} \text{ y}$$

$$\langle \mathsf{M}_{\beta\beta} \rangle < 270 - 650 \ meV$$

# **CUORE**

## The 19 towers



#### **CUORE**

CUORE cryostat – 6 mK achieved over  $\sim$ 400 kg of Cu and  $\sim$ 1 m<sup>3</sup> volume  $\rightarrow$  The coldest contiguous cubic meter in the Universe!



CUORE operation: end 2015

 $T_{1/2} > 9.5 \times 10^{26}$ 



 $\langle \mathsf{M}_{\beta\beta} \rangle < 51 - 133 \; \mathsf{meV}$ 

#### **CUPID**

## **CUORE Upgrade with Particle IDentification**

Basic idea:

CDR in ~two years

to 1 ton

Scale up

**Use CUORE infrastructure with** 

enriched crystals

upgraded technology to get 0 background at ton × y scale (10-15 meV sensitivity)

In particular, get rid of the dominant alpha background



#### **CUPID** group of interest

(in formation)

100 persons from CUORE

30 persons from outside

arXiv:1504.03612v1

#### **CUPID**

## **CUORE Upgrade with Particle IDentification**

Basic idea: Cuse CUORE infrastructure with

CDR in ~two years

Scale up

to 1 ton

- OSE COOKE IIII astructure with
- enriched crystals
- upgraded technology to get 0 background at ton × y scale (10-15 meV sensitivity)

In particular, get rid of the dominant alpha background



# CUPID LUCIFER, LUCINEU

#### Basic idea:

Use scintillating bolometers for full alpha/beta separation





**ZnSe** 

Phys. Lett. B 710 (2012) 318–323 JINST 9 (2014) P06004 JINST 8 (2013) P05021

Adv. High En. Phys. 2013 (2013) 237973

#### **CUPID**

## LUCIFER, LUCINEU

Example of  $\alpha$  background rejection: 313 g ZnMoO<sub>4</sub> crystal in Modane



Results obtained so far in ZnMoO<sub>4</sub>: extreme radiopurity < 4  $\mu$ Bq/kg U, Th  $\alpha$  rejection factor > 99.9 %

+ high energy resolution (5 keV FWHM), Q-value > 2615 keV

Eur. Phys. J. C 72 (2012) 72

arXiv:1502.01161

Detected heat (keV)

Background  $\sim 10^{-4}$  counts/(keV kg y)

Eur. Phys. J. C 74(2014)3096

Background < 0.5 counts (y x ton)

# LUCIFER, LUCINEU

Enriched crystal growth in progress

Eur. Phys. J. C 74 (2014) 3133



|              | LUCIFER                    | LUCINEU                                              |
|--------------|----------------------------|------------------------------------------------------|
| Crystal      | ZnSe                       | Li <sub>2</sub> MoO <sub>4</sub> /ZnMoO <sub>4</sub> |
| 0νββ isotope | <sup>82</sup> Se           | <sup>100</sup> Mo                                    |
| Enrichment   | 95%                        | 95%                                                  |
| Total mass   | 17 kg                      | 16 kg                                                |
| Isotope mass | ~9 kg                      | ~7 kg                                                |
| Laboratory   | LNGS                       | Modane+LNGS                                          |
| Τ1/2         | ~2.4x10 <sup>25</sup> y(6) | ~1.2x10 <sup>25</sup> y(2)                           |
| Sensitivity  | ~100-300 meV               | 90-300 meV                                           |

## **NEXT**

**Technique/location**: High pressure (10-15 bar) enriched Xe gas TPC – Canfranc (Spain)

**Source:**  $^{136}$ Xe enriched at 90% - 89 kg  $\rightarrow$  **3.9x10**<sup>26</sup> **nuclides** 

**Sensitivity**: **67 - 187 meV** in 300 kg  $\times$  y

**Timeline**: small scale ( $\sim$ 1 kg) prototypes extensively tested

intermediate scale prototype (~10 kg) – NEW – under commissioning in Canfranc

**NEW** physics run in 2016 - 2v detection and background model validation

full **NEXT-100** – start physics run beginning 2018



**Energy**: both electroluminescence and direct scintillation are recorded in the photosensor plane behind the transparent cathode

**Tracking**: exploit electroluminescence light generated at the anode and recorded in the photosensor plane behind it

Double beta decay event (MC)



### **NEXT**



The merit of this technology is to combine

- Reasonable energy resolution (use of electroluminescence)
- Topology of the event (use of gaseous target)

 $\Delta E_{FWHM} = 20 \text{ keV}$  (expected)

Expected background (simulation):  $5 \times 10^{-4}$  counts/(keV kg y)

$$T_{1/2} > 7x10^{25} y$$
  
in 300 kg × y

Scheme of

NEXT100



$$\langle \mathsf{M}_{\beta\beta} \rangle < 67 - 187 \ \mathsf{meV}$$



**NEXT-like 1-3 ton <sup>136</sup>Xe TPC** with major upgrades with respect to NEXT

#### **Objectives:**

- $\Delta E_{\text{FWHM}} = 0.5\% \rightarrow 12 \text{ keV}$
- Better radiopurity of the critical materials
- Magnetic field (improvement of multi-site single-site event ejection)
- Ba (daughter nucleus) tagging (as proposed in EXO − easier in gas)
   → investigation of Ba tagging using a fluorescent organic molecule



## **SuperNEMO**

**Technique/location:** tracking Geiger cells + plastic scintillator — Modane (France) and

possibly other laboratories – evolution of NEMO-3 – **Source** ≠ **Detector** 

**Source**: baseline:  $^{82}$ Se -  $^{150}$ Nd under consideration (it depends on enrichment possibility)

assuming 100 kg of materials: 7x10<sup>26</sup> 82Se nuclides - 2.5x10<sup>26</sup> 150Nd nuclides

**Timeline**: demonstrator module (~7 kg) operational in 2016

end 2017  $\rightarrow$  decision on full scale SuperNEMO (100 kg – 20 modules)

**Sensitivity**: **160 – 440 meV (demonstrator)** – 40 -100 meV (full SuperNEMO)



**Unique feature**: precise tracking Full reconstruction of 2 beta events

- Single electron energy spectrum
- Angular correlation



- Possible identification of the mechanism
- Excellent background discrimination (except 2v background)

 $\Delta E_{FWHM} = 120 \text{ keV}$ 

## **SuperNEMO**



However, if **large-scale Nd enrichment** is feasible, the potential of the experiment will increase substantially:

- Phase space ( $^{150}$ Nd) = 4 × Phase space ( $^{82}$ Se)
- Zero background achievable

(in case of <sup>82</sup>Se 2 bkg-counts/(y 100kg) are expected)

#### Good news

<sup>150</sup>Nd ~ 500 g recently delivered

(gaseous Nd compound at high temperature)

# **Current-generation experiments:**



# Summary of energy resolution and background levels

| ISOTOPE/<br>EXPERIMENT      | $\Delta E_{FWHM}$ [keV] | b<br>[counts/(keV kg y)] | BKG in ROI<br>[counts/(ton y)] |
|-----------------------------|-------------------------|--------------------------|--------------------------------|
| <sup>76</sup> Ge / GERDA-2  | 2.8                     | <b>10</b> <sup>-3</sup>  | 2.8                            |
| <sup>130</sup> Te / CUORE   | 4.8                     | 10-2                     | 48                             |
| <sup>136</sup> Xe / NEXT    | 20                      | 5×10 <sup>-4</sup>       | 10                             |
| 82Se / SuperNEMO            | 120                     | 1.5×10 <sup>-4</sup>     | 18                             |
| <sup>100</sup> Mo / LUCINEU | 5                       | 3×10 <sup>-4</sup>       | 1.5                            |
| 82Se / LUCIFER              | 15                      | 3×10 <sup>-4</sup>       | 4.5                            |



 $\rm b \times \, \Delta E_{FWHM}$ 

## Possible routes to 1 ton

Collaborations are already thinking to improve/upgrade their technology in view of 1 ton set-up



In order to select the best(s) technology(ies) for 1 ton, it is necessary to get the complete scenario of the current generation experiments and demonstrators



Wait 2-3 years for a sensible decision

## Possible routes to 1 ton

- 1 Fluid-embedded source way
  - > SNO+ ( $^{130}$ Te 200 kg) SNO+ ( $^{130}$ Te 800 kg)
  - ➤ KamLAND-Zen → KamLAND2-Zen (1 ton <sup>136</sup>Xe, higher energy resolution, pressurized Xe)
  - $\triangleright$  EXO-200  $\rightarrow$  nEXO (5 ton liquid <sup>136</sup>Xe TPC)
  - NEXT-100 → BEXT (1-3 ton high pressure <sup>136</sup>Xe TPC)

Low energy resolution 250 keV FWHM 80 keV FWHM

<sup>214</sup>Bi line not resolved from 0v2β <sup>136</sup>Xe signal

Wait for NEXT-100

- 2 Crystal source way
  - **GERDA 2** → **GERDA+MAJORANA** → 1 ton <sup>76</sup>Ge (Ge diodes)
  - LUCIFER, LUMINEU, LUCINEU

    AMORE (100 Mo 10 kg)

CUPID (1 ton <sup>130</sup>Te or <sup>100</sup>Mo or <sup>82</sup>Se) (bolometers) AMoRE (<sup>100</sup>Mo 200 kg)

Extreme background demand

(10<sup>-4</sup> counts/keV/kg/y at 2 MeV)

Cryogenics Crystallization Enrichment

# Impact of enrichment cost

| Isotope               | Abundance | Price/ton [M\$] |
|-----------------------|-----------|-----------------|
| <sup>76</sup> Ge      | 7.61      | $\sim 80$       |
| <sup>82</sup> Se      | 8.73      | ~ 80            |
| <sup>100</sup> Mo     | 9.63      | $\sim 80$       |
| <sup>116</sup> Cd     | 7.49      | $\sim 180$      |
| <sup>130</sup> Te     | 34.08     | $\sim 20$       |
| <sup>136</sup> Xe     | 8.87      | ∼ 5 <b>-1</b> 0 |
| <sup>150</sup> Nd (?) | 5.6       | > 200           |

Adapted from A. Barabash J. Phys. G: Nucl. Part. Phys. 39 (2012) 085103

## **Conclusions**

#### $\langle M_{\beta} \rangle$

- > KATRIN will take date in 2016, with sensitivity 0.2 eV
- R&D in progress with low temperature calorimeters

## $\langle M_{\beta\beta} \rangle$

- Klapdor's claim strongly disfavored by GERDA 1
- Present sensitivity in the 150-400 meV range: GERDA-1, EXO, KamLAND-Zen, CUORE-0
- ➤ New experiments located in Europe will approach the inverted hierarchy region: CUORE, GERDA 2
- > ~10 kg demonstrators will aim to validate new technologies in Europe: SuperNEMO demonstrator, NEW (NEXT-10), LUCIFER+LUCINEU
- Two routes towards the 1 ton scale in Europe (with important US contributions): CUPID, BEXT, GERDA+MAJORANA
- No complete elements for down-selection of technologies before 2-3 years