Neutrino Mass Measurements Asia

Second International Meeting for Large Neutrino Infrastructures Apr. 21, 2015 Itaru Shimizu (Tohoku Univ.)

Neutrino Mass

Possible mass terms

neutrino has no electric charge

- Heavy neutrino (just below GUT scale) naturally explains "finite but light neutrino mass" $m \sim \frac{m_D^2}{M_P}$ (Seesaw mechanism)
- CP violating decay of heavy neutrino explains "matter dominance in the universe" (Leptogenesis theory)

Neutrinoless Double-Beta Decay

Neutrino Mass Hierarchy

Mass hierarchy (MH) determination

reactor neutrino experiments in China and Korea are competitive with other MH projects (atmospheric / accelerator neutrinos)

(a) inverted hierarchy case

find $0\nu\beta\beta$ signal in the next generation experiments! \bigcirc If we don't find the signal,

(b) normal hierarchy case

"Majorana neutrino" will be rejected

need to set the next target down to 1-5 meV ...

Reactor neutrino oscillation

Double Beta Decay Experiments

Experiment	ββ candidate	Q-value[keV]	Enrichm.	$N_{\beta\beta} \times 10^{26}$	Start [y]	<m<sub>ee>[meV]@5y</m<sub>
GERDA	⁷⁶ Ge	2039	yes	3.2	2013	73-203
Majorana	⁷⁶ Ge	2039	yes	2.4	2014	106-295
MaGe	⁷⁶ Ge	2039	yes	68	2020	43-120
CUORE	¹³⁰ Te	2527.5	no	9.6	2014	40-94
Lucifer	⁸² Se	2995	yes	1.3	2014	35-94
AMore	¹⁰⁰ Mo	3034	yes	3	?	27-63
SNO+	¹⁵⁰ Nd	3370	no	1.8	2014	172-180
Kamland-Zen	¹³⁶ Xe	2476	yes	4	2013-2015	25
Candles	⁴⁸ Ca	4270	no	0.04	2011	500
Candles-enr	⁴⁸ Ca	4270	yes	1	?	IH
Exo-200	¹³⁶ Xe	2476	yes	2.3	2011	87-221 @2y
Exo-Full	¹³⁶ Xe	2476	yes	20	?	16-40
Next-100	¹³⁶ Xe	2476	yes	4	2015	90 @6y
Next-1t	¹³⁶ Xe	2476	yes	30	?	38 @(3+3)y
COBRA	¹¹⁶ Cd	2809	yes	nd	?	50
SuperNemo	⁸² Se	2995	yes	7.3	2014	40-105
Moon	⁸² Se/ ¹⁰⁰ Mo	2995/3134	yes	30	?	IH
DCBA	¹⁵⁰ Nd	3370	yes	10	?	30

LowNu11, Seoul

Asia

Silvia Capelli - ββ0v: experimental review

KamLAND-Zen

Kamioka Liquid Scintillator Anti-Neutrino Detector Kamioka Liquid Scintillator Anti-Neutrino Detector Zero Neutrino Double Beta

KamLAND-Zen Phase I

decane82%pseudo-cumene18%PPO2.7 g/literxenon2.44 wt%

Advantage of KamLAND

- running detector : start quickly with relatively low cost
- big and pure : no BG from external gamma-rays
- purification of LS, replacement of mini-balloon are possible

→ high scalability (a few ton of Xe)

realize double beta-decay search with low background

Construction in 2011

inner balloon deployment

inside view

Improvement Efforts after Phase 1

1. Remove radioactive impurities by Xe-LS purification

candidates of ~2.6 MeV peak

→ only 4 nuclei ^{110m}Ag (250 d), ²⁰⁸Bi (3.68x10⁵ yr), ⁸⁸Y (107 d), ⁶⁰Co (5.27 yr) lifetime longer than 30 days detected in Fukushima fallout

Two possible sources:

(1) contamination by Fukushima-I reactor fallout

(2) cosmogenic Xe spallation while above ground

"primary" background source (^{110m}Ag) can be removed by Xe-LS purification

2. Increase amount of Xenon

3. Spallation cut after muon

muon-neutron-¹⁰C (τ = 27.8 s) triple coincidence \rightarrow ¹⁰C background rejection

4. Optimization of volume selection

fiducial volume limitation by 214 Bi (U) on the balloon film \rightarrow multi-volume selection

Phase 1 (first 110.3 days)

Purification Strategy

Xenon and LS purification to reduce radioactive impurities

KamLAND-Zen Phase 2 start

combined result (Phase 1 + 2)

Detector improvements are planned in the near future

KamLAND2-Zen

General-purpose

larger crane strengthen floor enlarge opening

accommodate various devices CaF₂, CdWO₄, NaI, ...

1000 kg enriched Xe

High performance

Winstone Cone

High Q.E. PMT

17" $\Phi \rightarrow 20$ " Φ , $\epsilon=22\% \rightarrow 30\%$

Photo-coverage > X2 Light Collection Eff. > X1.8

New Liquid Scintillator

x1.4

KamLAND liquid scintillator8,000 photon/MeVtypical liquid scintillator12,000 photon/MeV

 $\sigma(2.6 \text{MeV})$ = 4% \rightarrow < 2.5%

naive calc. < 2%

target $\langle m_{\beta\beta} \rangle$ ~ 20 meV / 5 year

CANDLES

CANDLES

CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer

S. Yoshida - DBD14

Why ⁴⁸Ca?

- highest Q-value (⁴⁸Ca ββ-decay : 4.27 MeV)
- little background from natural radioactivities
- natural abundance of ⁴⁸Ca : 0.187% (small)

need isotope enrichment

- CaF₂ (pure) scintillator

transparent, ultra-pure crystal 200 kg, 300 kg, 2 ton, ... enrichment of ⁴⁸Ca

- Liquid scintillator

wavelength shifter, CaF_2 emission ~ 280 nm

 4π active shield (surrounded by passive shield)

- Large PMT

high energy resolution

pulse shape of scintillation light from $CaF_2 \& LS$

CANDLES Prospect

- ELEGANT VI
- CANDLES I, II

- CANDLES III

now

background free measurement with 4π active shield

larger amount of ⁴⁸Ca in CANDLES

performance of 96 CaF₂ in LS active shield will be tested at underground

future option

enrichment of ⁴⁸Ca with Crown Ether chromatography is in R&D stage

- Next CANDLES increase CaF₂ in large LS detector

CANDLES III @ Kamioka

S. Umehara DBD11

Energy Spectrum in CANDLES III

~8 week measurement with high purity 26 CaF₂

Internal BG : almost OK External BG : need to be reduced

newly install shield system for external y-rays (neutron origin)

- expected $\langle m_{\beta\beta} \rangle$ sensitivity ~ 0.5 eV

Further Development

1. Installation of the cooling system at the top of the detector

cooling system

light output increase at low temperature

2. Installation of the "Geomagnetic cancellation coil" for PMTs

expected energy resolution ~ 4% (FWHM) @ Q-value

Sensitivity of CANDLES

	CANDLES III	Next CANDLES		
Crystal	3.2kg×96 crystals	2% ⁴⁸ Ca		50% ⁴⁸ Ca
Total Mass	305kg (350g)	2 ton (25kg)		2 ton(610kg)
Energy Resolution	(4.0%)	2.8%(Req.)		0.5%(Req.)
2νββ	0.01	0.1	\Box	0.01
²¹² Bi, ²⁰⁸ TI	0.26	~0.1		~0.01
Expected BG	0.27/year	< 0.7/3year		< 0.2/9year
<m<sub>v></m<sub>	0.5 eV	0.08		0.009
-	Current system	~2% enriched ⁴⁸ Ca and cooling system	scintillating bol	

DCBA

DCBA

Drift Chamber Beta-ray Analyzer

Track / Position reconstruction

Momentum reconstruction

DCBA Prospect

(foreseen: 2.4 kG magnetic field)

Background

 $2\nu\beta\beta$: reduction with better energy resolution ²¹⁴Bi: tagged by ²¹⁴Po alpha

Projected sensitivity @ 90% C.L.

DCBA-T3: <m_{ββ}> < ~4 eV MTD-full: **<m**_{ββ}> **< ~30 meV**

H. Iwase DBD11

Chamber

3500

Gas Container

2600

AMoRE

AMoRE

Advanced Mo-based Rare process Experiment

Phonon sensor (MMC)

V. N. Kornoukhov - TAUP 2011

- Phonon + Light sensor (MMC)

scintillating bolometer (Debye temp. = 438 K) metallic magnetic calorimeter, fast signals light yield at low temp. ~ 30,000 photon / MeV alpha / gamma separation

⁴⁰Ca¹⁰⁰MoO₄ Crystal

• SB28 • SB29 • S35 • SS68 weight 196 g weight 390 g weight ~300 g weight ~300 g

H. J. Kim - JPS-KPS joint meeting 2014

Detector Performance

AMoRE Prospect

Y. H. Kim - Joint Winter Conference on Particle Physics, String and Cosmology

Summary

Neutrino mass measurements in Asia are reviewed

Double Beta Decay

Japan KamLAND-Zen ¹³⁶Xe CANDLES ⁴⁸Ca DCBA ¹⁵⁰Nd, ⁸²Se, ¹⁰⁰Mo AXEL (future) ¹³⁶Xe ZICOS (future) ⁹⁶Zr Korea AMoRE ¹⁰⁰Mo

India

Neutrino Oscillation Super-K / T2K KamLAND Hyper-K (future)

RENO RENO-50 (future) Daya Bay JUNO (future) INO (future)

 Several double-beta decay experiments will reach the sensitivity to test the inverted hierarchy in the near future