

April 21, 2015 @The Second International Meeting for Large Neutrino Infrastructures

Hyper-Kamiokande - Exploring Neutrino CP violation -

T. Nakaya (Kyoto/Kavli IPMU) for the Hyper-K collaboation

A door to Neutrino CP violation is opened

Viewpoint: Neutrino Experiments Come Closer to Seeing CP Violation

Joseph A. Formaggio and , Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Published February 10, 2014 | Physics 7, 15 (2014) | DOI: 10.1103/Physics.7.15

The T2K experiment has measured the largest number of events associated with muon neutrinos oscillating into electron neutrinos, an important step toward seeing *CP* violation in neutrino interactions.

Charge-parity (*CP*) violation—evidence that the laws of physics are different for particles and antiparticles—is often invoked as a "must" to explain why we observe more matter than antimatter in the universe. But the *CP* violation observed in interactions involving quarks is insufficient to explain this asymmetry. As a result, many theorists are looking toward leptons—and, specifically, neutrinos—for additional sources of *CP* violation. Researchers running the Tokai to Kamioka (T2K) experiment—a particle physics experiment at the Japan Proton

Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

K. Abe et al. (T2K Collaboration) Phys. Rev. Lett. **112**, 061802 (2014) Published February 10, 2014 | PDF (free)

Indication in 2011, [PRL 107, 041801 (2011)]

History with large θ₁₃ 2012

Prompt energy (MeV)

15年4月20日月曜日

Brainstorming

- 28 ν_{e} events in T2K (~10% of the proposal)
 - Background expected: 4.3 events
 - 3.2 events from beam $\nu_{\rm e}$
 - 1.0 events from NC interaction (π^0 dominant)
 - 0.1 events from CC ν_{μ} interaction
 - Signal ($\nu \mu \rightarrow \nu e$) calculation: 28-4.3 = 23.7 events.
 - Maximum CPV effects ~25% of the leading term
 - 23.7 * 0.25/(1+0.25) = 4.74 CPV events
- With 100% T2K, we will have ~290 events.
 - ~50 CPV events (An evidence of ν CPV could be seen)

A definitive answer to neutrino CPV

Hyper-Kamiokande

Hyper-K Overview

x50 for vCP to T2K

x2 (~I.2MW)

OZO10 GOOGLE

3.103° (off axis 2° beam center) 3.637°(off-axis 2.5° beam center) 4.159°(off-axis 3° beam center)

Fig. 13. Schematic directional view of Super-K and Hyper-K from the neutrino beam line target at J-PARC.

x25 Larger v Target & Proton Decay Source

higher intensity v by upgraded J-PARC

Decay Voume

J-PARC

© 2012 Cnee Spot Image © 2012 Mapabe.com © 2012 ZENRIN

Multi-purpose detector, Hyper-K

Letter of Intent, Hyper-KWG, arXiv:1109.3262 [hep-ex]

LBL study, Hyper-K WG, arXiv:1502.05199 and submitted to PTEP

- •Proton decay 3σ discovery potential
 - 5×10^{34} years for $p \rightarrow e^+ \pi^0$
 - $I \times 10^{34}$ years for $p \rightarrow v K^+$
- Comprehensive study on V oscillations
 - CPV (76% of δ space at 3 σ), <20° precision
 - MH determination for all δ by J-PARC/Atm ν
 - θ_{23} octant: $\sin^2\theta_{23} < 0.47$ or $\sin^2\theta_{23} > 0.53$
 - <1% precision of Δm^{2}_{32}

 \bullet test of exotic scenarios by J-PARC/Atm ν

- Astrophysical neutrino observatory
 - Supernova up to 2Mpc distance, ~ISN /10 years
 - Supernova relic v signal (~200v events/10yrs)
 - Dark matter neutrinos from Sun, Galaxy, and Earth
 - Solar neutrino ~200v events/day

Hyper-K status in Japan

- Recommendation by HEP community
 - <u>http://www.jahep.org/office/doc/201202_hecsubc_report.pdf</u>

KEK roadmap includes Hyper-K

- http://kds.kek.jp/getFile.py/access?sessionId=1&resId=0&materialId=0&confId=11728
- Cosmic Ray community endorses Hyper-K as a next large-scale project
- Science Council of Japan selects Hyper-K as a top priority project in the "Japanese Master Plan of Large Research Projects" (27 chosen out of 192 in all science area).
 - http://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-22-t188-1.pdf

 It is not in the list of MEXT roadmap 2014. We seriously challenge the roadmap 2017 for the approval of budget.

International Journal of High-Energy Physics

Sign in Forgotten your password? Sign up

CERN COURIER

AGILENT QUALITY ASSURED

Latest Issue Archive Jobs Links Buyer's guide White papers Events Contact us

Search

Go

Agilent

REGISTER NOW

Register as a member of cerncourier.com and get full access to all features of the site. Registration is free.

LATEST CERN COURIER ARTICLES

- Sommaire en français
- Learning to play
- Safe GMOs
- Vocal learning in chimps
- New products

CERN COURIER

Apr 9, 2015

Proto-collaboration formed to promote Hyper-Kamiokande

The Inaugural Symposium of the Hyper-Kamiokande Proto-

Collaboration, took place in Kashiwa, Japan, on 31 January, attended by more than 100 researchers. The aim was to

promote the proto-collaboration and the Hyper-Kamiokande project

internationally. In addition, a ceremony to mark the signing of an agreement for the promotion of the project between the Institute for Cosmic Ray Research of the University of Tokyo and KEK took place during the symposium.

Huihong Technologies Proposed detector Fiber Optics Manufacturer Since 1995

More companies

SHARE THIS

The Hyper-Kamiokande project aims both to address the mysteries

available as a regular digital edition. Click here to read the digital edition.

KEY SUPPLIERS

DIGITAL EDITION

CERN Courier is now

15年4月20日月曜日

Hyper-K proto-collaboration w/ cooperation of KEK-IPNS and UTokyo-ICRR

Inaugural Symposium on 1/31, 2015

Hyper-K Proto-Collaboration has been formed

- **KEK-IPNS** and **Tokyo-ICRR** signed the **MOU** of the cooperation in promoting the Hyper-Kamiokande.

MoU signing by KEK/ICRR

- 240 members from 13 countries
- The collaboration governance structure is defined.
 - Steering Committee, International Board Representatives, and Working Group with project leaders
 - R&D fund and travel budget already secured in some countries, and more in securing processes.

Hyper-Kamiokande EU meeting@CERN 27-28 April 2015

Meeting to discuss the European effort in Hyper-K
Open to anyone who has interest in Hyper-K, or is planning to join Hyper-K, or is contributing
http://indico.cern.ch/e/ThirdEUHyperK

Third Hyper-Kamiokande EU meeting

27-28 April 2015

CERN Europe/Zurich timezone

Overview

Timetable

Registration

Participant List

Accommodation

Past Hyper-Kamiokande EU meetings

- Meeting to discuss the European effort in the Hyper-Kamiokande experiment.
- Open to anyone who has interests in Hyper-K, or is planning to join Hyper-K, or is contributing.
- Detailed information about your Country in Hyper-K can be discussed with your representatives in the Hyper-Kamiokande International Board Representatives, its chair if no representatives are available yet or the international Steering Committee chair.

CERN

IT Amphitheatre

Ŷ

Registration for this event is now open Deadline: 26 Apr 2015

Search

The next action

- Design Report is requested by KEK/ICRR.
 - To be prepared in 2015 toward the budget request. The next processes of the SCJ master-plan and MEXT roadmap will be in 2016-2017.
 - Optimum design, Construction cost&period, Beam & Near detector, International responsibilities
 - The international review will proceed under KEK/ICRR to promote the project.
- Once the budget is approved, the construction can start in 2018 and the operation will begin in ~2025.

It is a critical time to promote the project. Open for new Collaborators

Target Schedule

- -2018 Construction starts
- -2025 Data taking start
 - -2028 Discovery of Neutrino CP violation?
 - -2030 Discovery of Proton Decay?
 - -20xx Detection of supernova neutrinos
 - -20xx Discovery of new phenomena

Physics with Hyper-Kamiokande

16

• Comparison between $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ Thursday, August 25, 20 as large as ~27% from nominal (at $\theta_{23}=\pi/4$). • also sensitive to any CPV (such as >3 neutrinos)

CP measurement with Hyper-K

- Strength of water Cherenkov detector
 - LARGE mass statistics is always critical
 - Excellent reconstruction/PID performance especially in sub-GeV region (quasi-elastic→single ring)
- Best matched with low energy, narrow band beam
 - Off-axis beam with relatively short baseline
 - Sensitive to CPV with less matter effect

(natural extension of technique proved by T2K)

Japan Proton Accelerator Research Complex

15年4月20日月曜日

J-PARC MR for neutrinos

FX: Rep. rate will be increased from ~ 0.4 Hz to ~1 Hz by replacing magnet PS's, rf cavities, ...
 SX: Parts of stainless steel ducts are replaced with titanium ducts to reduce residual radiation dose.

JFY	2011	2012	2013	2014	2015	2016	2017
			Li. energy upgrade	Li. current upgrade			
FX power [kW] (study/trial)	150	200	200 - 240	200 - 300 (400) ~ 32	.0 kW		750
SX power [kW] (study/trial)	3 (10)	10 (20)	25 (30)	20-50		\rightarrow	100
Cycle time of main magnet PS New magnet PS for high rep.	3.04 s	2.56 s	2.48 s		Manut	facture ation/test	1.3 s
Present RF system New high gradient rf system	Install. #7,8	Install. #9 R&		Manufa installa	acture ition/test		•
Ring collimators	Additional shields	Add.collimato rs and shields (2kW)	Add.collimat ors (3.5kW) C,D,E,F	Back to JFY2012 (2kW)	Add. coll. C,D	Add. coll. E,F	
Injection system FX system	lnj. kicker	 Kicker PS improvement, Septa manufacture /test Kicker PS improvement, LF septum, HF septa manufacture /test 				→→	
SX collimator / Local shields	SX collimator					_ocal shie	elds 🕨
Ti ducts and SX devices with Ti chamber		SX septum endplate	Beam ducts	Beam ducts	ESS		

21

J-PARC MR for neutrinos

- The maximum power in JFY2014 is 329.9kW.
- The beam power is limited by the beam loss in MR (not injection). The LINAC/RCS can feed 500~600 kW equivalent beam to MR even now. The T2K seriously requests the operation at higher beam power beyond 330 kW.
 - It results in more beam power in the era of Hyper-K, I.2MW or beyond with the update of power supply system.

22

Mid · Long-term plan

Several ideas under discussion, towards multi-MW facility

東京大学

- RCS energy increase to reduce space charge effect
 - ~1.5MW
- New Booster Ring (8GeV) between RCS &MR
 - >2MW
- New SC proton linac for neutrino beam (Conceptual study)
 - ~9MW linac with
 >9GeV energy
 - Using KEKB tunnel?

Acceptance of 12N neutrino beam me

• ~2MW beam can be accepted with moderate updates.

Component	Beam power/parameter				
Target	$3.3 \times 10^{14} \text{ ppp}$				
Beam window	$3.3 \times 10^{14} \text{ ppp}$				
Horn					
Cooling for conductors	$2\mathrm{MW}$				
Stripline cooling	$1 \sim 2 \mathrm{MW}$	$(400\rm{kW})$			
Hydrogen production	$1 \sim 2 \mathrm{MW}$	$(300{\rm kW})$			
Horn current	320 kA	(250 kA)			
Power supply repetition	1 Hz	(0.4 Hz)			
Decay volume	$4\mathrm{MW}$				
Hadron absorber/beam dump	$3\mathrm{MW}$				
Water cooling facilities	$\sim 2\mathrm{MW}$	$(750{\rm kW})$			
Radiation shielding	$4\mathrm{MW}$	$(750{\rm kW})$			
Radioactive air leakage to the TS ground floor	$\sim 2\mathrm{MW}$	$(500 \rm kW)$			
Radioactive cooling water treatment	$\sim 2\mathrm{MW}$	$(600 \rm kW)$			

v_e candidate events after selection

 $sin^22\theta_{13}=0.1,\delta=0$, normal MH

LARGE $\theta_{13} => good for Hyper-K$

- High Signal $(\nu_{\mu} \rightarrow \nu_{e})$ and Low Background $(\pi^{0}, beam \nu_{e}, etc..)$
 - Systematic error is more reliable (under control) for the V_e signal than BG (example, π^0)
 - Sensitivity is studied assuming a realistic systematic errors.

 >10% larger asymmetry is expected for δ between 20 and 160 degrees (200 and 340) which corresponds to ~77% region of δ.

Systematic Uncertainty

Realistic estimation based on SK/T2K

- Beam flux + near detector constraint
 - Conservatively assumed to be the same
- Cross section uncertainties not constrained by ND
 - Nuclear difference removed assuming water measurements
- Far detector
 - Reduced by increased statistics of atmospheric V control sample

Uncertainty on the expected number of events at Hyper-K (%)

	v mode		anti-v mode		((T2K 2014)		
	Ve	νμ	νe	νμ		Ve	νμ	
Flux&ND	3.0	2.8	5.6	4.2		3.1	2.7	
XSEC model	I.2	I.5	2.0	I.4		4.7	5.0	
Far Det. +FSI	0.7	١.0	I.7	l.l		3.7	5.0	
Total	3.3	3.3	6.2	4.5		6.8	7.6	

δ dependence of #events and E shape

Neutrino mode: Appearance

Antineutrino mode: Appearance

CP Sensitivity

PTEP (2015) arXiv:1502.05199

15年4月20日月曜日

15年4月20日30日

Status of R&D

Worldwide R&D

PC controlled winch

PC

Stainless steel wire

Source

container

Gate valve

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 40, NO. 9, SEPTEMBER 2012

15年4月20日月曜日

Calibration source

Removable

under the light

Geological survey & Cavern stability

₩52年和4月5月7月1日月1日1月1日日、13

Affordable cable tension and plasticity region depth even

Tank liner material

5mm High Density Polyethylene

- •Soak test
 - •pure water, 1% Gd₂(SO4)₃ loaded
- •Tensile creep test
- pressure test
- •leak test at the penetrating part

Satisfactory results for Hyper-K

New Photon Sensors

New Photon Sensors					
Super-K PMT	highQE/CE PMT	highQE/CE HPD			
20yrs experience Known cost	R&D nearly complete Low cost expected	R&D in progress Low cost expected			
QE 22%	30%	30%			
CE 80%	93%	95%			

Performance of New photon-sensors

- Better timing and charge resolutions w/ High QE
- The proof-test in wanter is on-going
- R&D will be completed in 2016 to select one technology.

Near Detectors

Conceptual design

Oscillation study

• Water target (same w/ the far detector, minimize nuclear uncertainty)

- NCπ⁰ BG measurement
- beam ve BG
- Other physics
 - $\nu\mu$, νe interaction studies
 - Sterile v searches

 TITUS

 WČ+MRD

 Image: state sta

Development works

- Detector design optimization
 - tank shape, segmentation wall, tank liner, PMT support structure
- Water purification system, water quality control
- DAQ electronics (under water?)
- Calibration source deployment system
 - automated, 3D control
- Software development
 - Detector geometry optimization, enhance physics capabilities
- Physics potential studies
 - requirements for near detectors

15年4月20日月曜日

• Wide Physics topics, many discovery potentials

- Neutrino CPV (76% of δ space at 3 σ), δ precision of <20°
 - Proton decay discovery
 - SN burst, relic SN, WIMP annihilation v

• Many good results in development works

- Cavity and support design
- Plastic liner
- 50 cm high sensitivity photon-sensors
- Many rooms to be contributed

Boost promoting the project

- International proto-collaboration has been formed
- Cooperation with KEK/ICRR to develop the project
- Design Report to be prepared in 2015 w/ international review
- Open for new collaborators

Physics Digest

Letter of Intent, Hyper-KWG, arXiv:1109.3262 [hep-ex] LBL study, Hyper-K WG, arXiv:1412.4673 [hep-ex]

- •Proton decay 3σ discovery potential
 - 5×10^{34} years for $p \rightarrow e^+ \pi^0$
 - $I \times 10^{34}$ years for $p \rightarrow v K^+$
- Study on full parameters of ν oscillations
 - CPV (76% of δ space at 3 σ), <20° precision
 - MH determination for all δ by J-PARC/Atm ν
 - θ_{23} octant: $\sin^2\theta_{23} < 0.47$ or $\sin^2\theta_{23} > 0.53$
 - <1% precision of Δm^{2}_{32}
 - \bullet test of exotic scenarios by J-PARC/Atm ν
- Astrophysical neutrino observatory
 - Supernova up to 2Mpc distance, ~ISN /10 years
 - Supernova relic v signal (~300v events/10yrs)
 - Dark matter neutrinos from Sun, Galaxy, and Earth
 - Solar neutrino ~200v events/day

