

Scope of talk

- Measurements of direct/effective neutrino mass using single/double beta process
- Single beta measurements
 - Calorimetric measurements
 - Frequency measurements
- Double beta decay experiments
 - Current project status and results
 - Background reduction techniques
 - Future projects and prospects
- International collaborations forming to build large scale detectors

Direct single electron measurements

- Looking at the kinematics of β-decays
 - Looking for deviations at end-point
- Low Q isotopes (³H, ¹⁸⁷Re, ¹⁶³Ho)
- Two approaches used
 - Spectroscopy (source ≠ detector)
 - Calorimetry (source = detector)

- In calorimetry, full energy of decay measured, except for the hidden energy of the neutrino
 - can use electron capture process, similar deviations expected
 - no backscattering, energy loss in source, no solid state excitations
 - limited statistics, backgrounds pile-up, spectrum related systematics
- In spectroscopy measure energy (or cyclotron frequency of emitted electron)
 - high statistics, high energy resolution
 - high backgrounds, source effects

187Re experiments: MANU-MIBETA ... MARE

proposed since 1985 by Genova group

- MIBETA @ MiB with AgReO₄
 - ► m_v< 15 eV 90% C.L.

 M.Sisti et al., NIM A 520 (2004) 125
- MANU @ Ge with metallic Re
 - ► m_v < 26 eV 95% C.L.
 </p>

F.Gatti, Nucl. Phys. B91 (2001) 293

first ¹⁸⁷Re experiments: N_{av}≈10⁷ events

MARE (Microcalorimeter arrays for a Rhenium Experiment)

- project for a sub-eV direct neutrino mass measurement
- wide international interest since Orlando (USA) meeting in 2007
- phased approach to optimize detectors technology

HOLMES (ERC-Advanced Grant n. 340321)

goal

- neutrino mass measurement: m_v statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - ▶ assess EC Q-value
 - assess systematic errors

baseline

- Transition Edge Sensors (TES) with ¹⁶³Ho implanted Au absorbers
 - ► 6.5x10¹³ nuclei per detector → 300 dec/sec
 - ► ΔE≈1eV and τ_R≈1µs
- 1000 channel array
 - 6.5x10¹⁶ 163Ho nuclei → ≈18µg
 - ➤ 3x10¹³ events in 3 years

→ Project Start: 1 Feb 2014

¹⁶³Ho production and embedding

163Ho production by nuclear reaction

- high yield
- low by-products contaminations (in particular ^{166m}Ho, β τ_{1/2}=1200y)
- not all cross sections are well known
 - → neutron activation of enriched ¹⁶²Er (nuclear reactor) → HOLMES baseline
 - → 163 Dy $(p,n)^{163}$ Ho $E_p > 10$ MeV (direct, low yield → PSI?)
 - \rightarrow nat Dy(α ,xn)¹⁶³Er and ¹⁵⁹Tb(⁷Li, 3n)¹⁶³Er

■ ¹6³Ho Separation from Dy, Er and more ...

- radiochemistry (before and/or after irradiation)
- magnetic mass separation
- resonance ionization laser ion source (RILIS)?

■ ¹6³Ho embedding in detector absorber

- implantation (+magnetic separation)
- ➤ Au film deposition for full containment

J.W. Engle et al., NIM B 311 (2013) 131-138

particle	р	n 10 ¹⁴ n/cm2/s	p 16 MeV 80 μA	p 24 MeV 240 μA	α 40 MeV 30 μA
target	W/Ta	¹⁶² Er (40%)	nat Dy 200mg/cm²	^{nat} Dy 20g	^{nat} Dy "thick"
163Ho prod rate [nuclei/h]	1014	10 ¹³⁻¹⁵ / mg ¹⁶² Er	1014	1015	1013

HOLMES detectors

- Transition Edge Sensors (TES) with Au absorber
 - hot electron microcalorimeters with electro-thermal feedback
 - 2 μm thick electrodeposited Au for full absorbtion
- MoAu or MoCu proximity TES → T_c≈100mK
- on Si₂N₃ membrane

EC first detector prototype

- Absorber for calorimetric measurement
 - → ion implantation @ ISOLDE-CERN
- About 0.01 Bq per pixel
- Two pixels have been simultaneously measured

EC measurement of the spectrum

Single pixels

- Rise Time ~ 130 ns
- $\Delta E_{\text{FWHM}} = 7.6 \text{ eV}$ @ 6 keV (2013) $\Delta E_{\text{FWHM}} = 2.4 \text{ eV}$ @ 0 keV (2014)
- Non-Linearity < 1% @ 6keV
- Presently most precise ¹⁶³Ho spectrum

Microwave multiplexing for large MMC arrays

- fabrication
- detection technique

- Prove scalability with medium large experiment ECHo-1K
 - A ~ 1000 Bq

High purity ¹⁶³Ho source (produced at reactor)

- $\Delta E_{\text{FWHM}} < 5 \text{ eV}$
- $\tau_r < 1 \,\mu s$
- multiplexed arrays → microwave SQUID multiplexing
- 1 year measuring time $\rightarrow 10^{10}$ counts = Neutrino mass sensitivity $m_v < 10 \text{ eV}$

Just approved

Research Unit FOR 2202/1

"Neutrino Mass Determination by Electron Capture in Holmium-163 – ECHo"

ECHo-1M towards sub-eV sensitivity

NuMECS (Ho EC detector)

- LANL, NIST, U.Madison
- Transition-Edge Sensors (TES)
- Good energy resolution (6 eV @ 6 keV with 55Fe surrogate).
- Concentration on high purity ¹⁶³Ho production – proton activation of dysprosium
- Show scalability through a demonstrator experiment with 4 x 1024 TES array of Ho-implanted detectors with RF-SQUID multiplexing

Project 8

Coherent radiation emitted can be collected and used to measure the energy of the electron in a non-destructive manner.

Frequency Approach

$${}^{3}{\rm H} \rightarrow {}^{3}{\rm He}^{+} + e^{-} + \bar{\nu}_{e}$$

"Never measure anything but frequency."

I. I. Rabi

A. L. Schawlow

 Use cyclotron frequency to extract electron energy.

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e}$$

 Non-destructive measurement of electron energy.

B. Monreal and J. Formaggio, Phys. Rev D80:051301

The Apparatus

Copper waveguide

Kr gas lines

Magnetic bottle coil

Gas cell

Test signal injection port

Waveguide Cut-away

Photo of apparatus

Cyclotron frequency coupled directly to standard waveguide at 26 GHz, located inside bore of NMR 1 Tesla magnet.

Magnetic bottle allows for trapping of electron within cell for measurement.

Project 8 "Event Zero"

First detection of single-electron cyclotron radiation.

Data taking on June 6th, 2014 immediately shows trapped electrons.

Project 8 "Event Zero"

First detection of single-electron cyclotron radiation.

Data taking on June 6th, 2014 immediately shows trapped electrons.

Image Reconstruction & Energy Resolution

Event reconstruction from image reconstruction allows detailed analysis

(energy & scattering all extractable)

0vββ Experimental challenge

- Looking for full energy peak of electrons at the tail of the (expected and irremovable) two-neutrino beta decay
 - 0νββ $T_{1/2}$ ~ 10^{27} 10^{28} years
 - $2vββ T_{1/2} \sim 10^{19} 10^{21}$ years
- Tonne scale detectors required to reach higher half-life
- Need to remove/understand all backgrounds contributing to region of interest
 - including cosmogenic activation and c.r. by-products

$$\left| \sum_{i} m_{i} U_{ei}^{2} \right| \equiv \left\langle m_{\beta\beta} \right\rangle$$

$$1/T_{1/2} = PS * NME^2 * (< m_v > / m_e)^2$$

0νββ-decay experiments

- Substantial progress over the last few years:
 - Multiple experiments have attained sensitivities of $T_{1/2} > 10^{25}$ years.
 - In the next few years expect to sensitivity exceeding $T_{1/2} > 10^{26}$ years.
 - Major advances in development of ultra-clean low activity materials and assay capabilities.
- Next generation detectors (tonne scale) are currently being developed by large international collaborations
 - Based on experience gained during the operation of current generation detectors
 - All aim for sensitivity and discovery levels at $T_{1/2} > 10^{27}$ years
 - An improvement of ×100 over current results.

Sensitivity per unit mass of isotope

➡ Isotopes have comparable sensitivities in terms of rate per unit mass

R.G.H. Robertson, MPL A **28** (2013) 1350021 (arXiv 1301.1323)

Inverse correlation observed between phase space and the square of the nuclear matrix element.

geometric mean of the squared matrix element range limits & the phase-space factor evaluated at g_A=1

From: J. Wilkerson

Reducing Backgrounds - Strategies

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
 - Select and use ultra-pure materials
 - Minimize all non "source" materials
 - Clean (low-activity) shielding
 - Fabricate ultra-clean materials (underground fab in some cases)
 - Go deep reduced μ 's & related induced activities
- Utilize background measurement & discrimination techniques

 $0\nu\beta\beta$ is a localized phenomenon, many backgrounds have multiple site interactions or different energy loss interactions

- Energy resolution
- Active veto detector
- Tracking (topology)
- Particle ID, angular, spatial,
 & time correlations

- Fiducial Fits
- Granularity [multiple detectors]
- Pulse shape discrimination (PSD)
- -lon Identification

0vββ decay Experiments - Efforts Underway

0vββ Recent Highlights

From "Fundamental symmetries, neutrinos, neutrons, and astrophysics: a White Paper on progress and prospects"

- The EXO, KamLAND-Zen, and GERDA double beta decay detectors have essentially ruled out a long-standing claim for observation of the neutrinoless decay mode in ⁷⁶Ge.
- The first measurement of the 2v double beta decay of 136 Xe was made by the EXO Collaboration.
- The CUORE Collaboration has brought the world's largest-volume dilution refrigerator to base temperature, a major step towards a ton-scale bolometric experiment.
- The MAJORANA DEMONSTRATOR Collaboration has reported record Cu purity from its underground electroforming campaign, and expects to achieve the ultra-low backgrounds specified. Commissioning runs with more than 10 kg of highly enriched ⁷⁶Ge are beginning in the SURF laboratory.
- The SNO+ experiment has demonstrated the stable suspension of isotopes in the scintillator Linear Alkyl Benzene, another path toward a ton-scale experiment.

From: J. Wilkerson

EXO-200 ¹³⁶Xe (2014)

Enriched Liquid Xe in TPC

- Q_{ββ}=2457.8 keV
- 200 kg of 80.6 % enriched¹³⁶Xe
- 75.6 kg fiducial mass,
- 100 kg years exposure
- Combine Scintillation-Ionization signal for improved resolution (88 keV FWHM @ $Q_{\beta\beta}$)
- Single site Multisite discrimination $T_{1/2} > 1.1 \times 10^{25} \text{ y (90\% CL)}$

EXO-200 Collaboration, Nature **510** 229 (2014)

1000 tonnes D₂O → 780 tonnes liquid scintillator

12 m diameter Acrylic Vessel

18 m diameter support structure; 9500 PMTs (~60% photocathode coverage)

1700 tonnes inner shielding H₂O

5300 tonnes outer shielding H₂O

Urylon liner radon seal

hold-down rope net

SNO

depth: 2092 m (~6010 m.w.e.) ~70 muons/day

SNO+ Rope Net in place

Loading of LAB with tellurium

Percent Loading of Tellurium is Feasible

• 0.3%, 0.5%, 1%, 3%, 5% (from left to right)

 3% Te in SNO+ Phase II DBD corresponds to <u>8 tonnes</u> of ¹³⁰Te *isotope* (cost for this much tellurium is only ~\$15M)

M. Chen

Ultraclean materials and Assay

- Underground electroformed copper.
 - Th decay chain 0.06 \pm 0.02 μ Bq/kg (0.15 counts in ROI)
 - U decay chain $0.17 \pm 0.03 \,\mu\text{Bq/kg}$ ($0.08 \,\text{counts}$ in ROI)
- World's most sensitive ICP-MS based assay techniques for U and Th in Cu
 - U decay chain <0.10 μBq ²³⁸U/kg
 - Th decay chain <0.06 μ Bq 232 Th/kg

Inspection of EF copper on mandrels

From: J. Wilkerson

Backgrounds in experiments

			1	
Experiment		Mass [kg] (total/FV*)	Bkg (cnts/ROI -t-y)	Width (FWHM)
CUORE0	¹³⁰ Te	32/11	300	5.1 keV ROI
EXO-200	¹³⁶ Xe	170/76	130	88 keV ROI
GERDA I	⁷⁶ Ge	16/13	40	4 keV ROI
KamLAND-Zen (Phase 2)	¹³⁶ Xe	383/88	210 per t(Xe)	400 keV ROI
CUORE	¹³⁰ Te	600/206	50	5 keV ROI
GERDA II	⁷⁶ Ge	35/27	4	4 keV ROI
Majorana Demonstrator	⁷⁶ Ge	30/24	4	4 keV ROI
NEXT 100	¹³⁶ Xe	100/80	9	17 keV ROI
SNO+	¹³⁰ Te	2340/160	45 per t(Te)	240 keV ROI

^{*} FV = $0\nu\beta\beta$ isotope mass in fiducial volume (includes enrichment factor) † Region of Interest (ROI) can be single or multidimensional (E, spatial, ...)

Projected

Scaling Example (nEXO)

Large scale helps

— Atten length for 2.4 MeV gammas

In fact, it helps twice:

- 1) Self shielding becomes effective
- 2) Compton tag efficiency greatly improves

Ovββ-decay — experiments From: J. Wilkerson

Next generation tonne scale experiment

- For half-lives of 10²⁷ years expect signals of ∼1 count / tonne year
- Aim for S:B of better than 1:1 in region of interest.
- Advances in development of ultra-clean materials and assay capabilities indicate one can achieve required backgrounds in next generation experiments.
 - Isotope enrichment requires time and \$s.
 - The field is rapidly approaching readiness to proceed with the construction of tonne scale experiments.
- Active international collaborations building on current efforts.
 - ⁷⁶Ge: Large Scale Ge, O(tonne) HPGE crystals (GERDA & Majorana)
 - ¹³⁶Xe : nEXO Liquid TPC, 5 tonnnes
 - ¹³⁰Te: SNO+ Phase II ¹³⁰Te in scintillator
- Experiments can be done in a staged (phased) approach. Many are considering stepwise increments.
- Several potential underground lab sites
 - SNOLAB, JingPing, Gran Sasso, SURF, CanFranc, Frejus, Kamioka, ANDES, Y2L

Large-Scale 76Ge

lonization

- MAJORANA and GERDA are working towards the establishment of a single international 76 Ge $0v\beta\beta$ collaboration. (Name not set: Ge1T, LSGe, ...)
- Envision a phased, stepwise implementation;

e.g. $250 \rightarrow 500 \rightarrow 1000 \text{ kg}$ 5 yr 90% CL sensitivity: $T_{1/2} > 3.2 \cdot 10^{27} \text{ yr}$ 10 yr 3σ discovery: $T_{1/2} \sim 3 \cdot 10^{27} \text{ yr}$

- Moving forward predicated on demonstration of projected backgrounds by MJD and/or GERDA
- Anticipate down-select of best technologies, based on results of the two experiments

- 5 tonnes of ^{enr}Xe
- nEXO 5 yr 90% CL sensitivity: $T_{1/2} > 6.6 \cdot 10^{27}$ yr
- LXe homogeneous imaging TPC similar to EXO-200:
 - baseline: install at SNOLAB (cosmogenic background reduced wrt EXO-200)
 - simultaneous measurement: energy, spatial extent, location, particle ID
 - Multi-parameter approach improves sensitivity: strengthens proof in case of discovery
 - -inverted hierarchy covered with a well proven detector concept
 - -possible later upgrade for Ba retrieval/tagging: start accessing normal hierarchy

Single-site,

Mainly signal,

2v and 0v

Multi-site,
Mainly
background

SNO+ Phase II 130Te

Scintillation

- 3% loading of Te already demonstrated
- Detector response model from Phase I predicts Phase II response
 - Plug-in replacement of SNO+ PMTs with R5912-HQEs more than doubles light yield for Phase II Additional wavelength-shifter R&D could further improve this
- Containment bag R&D necessary to achieve cleanliness
 Can leverage KamLAND-Zen and BOREXINO knowledge

Phase II:
$$T_{1/2} > 7 \times 10^{26}$$
 y (90% CL, natural)
 $T_{1/2} > 10^{27}$ y (90% CL, enriched)
 $T_{1/2} > 4 \times 10^{26}$ y (3 σ , natural)

External γ and ⁸B backgrounds are fixed (but fewer in ROI because of increased light yield)

From: J. Wilkerson

Neutrino mass measurements in Americas

- New approaches to single beta decay measurements being developed
 - Aiming for direct measurements at sub-eV
- Substantial progress over the last few years:
 - Multiple experiments have attained sensitivities of $T_{1/2} > 10^{25}$ years.
 - In the next few years expect to sensitivity exceeding $T_{1/2} > 10^{26}$ years.
 - Major advances in development of ultra-clean low activity materials and assay capabilities.
- Next generation detectors (tonne scale) are currently being developed by large international collaborations
 - Based on experience gained during the operation of current generation detectors
 - All aim for sensitivity and discovery levels at $T_{1/2} > 10^{27}$ years
- Internationalisation of double-beta field occurring, both in creation of large scale collaborations, but also inter-collaboration connections forming