Hyper-Kamiokande non-oscillation program

Masato Shiozawa

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI), U of Tokyo

> Second Int. Meeting for Large Neutrino Infrastructures April 21, 2015

Hyper-Kamiokande

25 x Super-K fiducial mass as neutrino target and proton decay source

Super-Kamiokande

Nakaya@this meeting

J-PARC

High intensity neutrino and anti-neutrino beam

J-PARC

© 2012 Cnes/Spot Image © 2012 Mapabc.com © 2012 ZENRIN Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Multi-purpose detector, Hyper-K

Letter of Intent, Hyper-KWG, LBL study, Hyper-KWG, arXiv:1109.3262 [hep-ex]

arXiv:1502.05199 and accepted by PTEP

•Proton decay 3σ discovery potential

- 5×10³⁴ years for $p \rightarrow e^+ \pi^0$
- $I \times 10^{34}$ years for $p \rightarrow V K^+$
- Comprehensive study on V oscillations
 - CPV (76% of δ space at 3 σ), <20° precision
 - MH determination for all δ by J-PARC/Atm V
 - θ_{23} octant: $\sin^2\theta_{23} < 0.47$ or $\sin^2\theta_{23} > 0.53$
 - <1% precision of Δm^{2}_{32}
 - test of exotic scenarios by J-PARC/Atm v
- Astrophysical neutrino observatory
 - Supernova up to 2Mpc distance, ~ISN /10 years
 - Supernova relic ∨ signal (~200∨ events/10yrs)
 - Dark matter neutrinos from Sun, Galaxy, and Earth
 - Solar neutrino $\sim 200 v$ events/day

Proton Decays

Motivation of Nucleon Decay Searches

- Only way to directly prove GUT
- Two major modes predicted by many models

• We need to pursue both decay modes for discovery, given the variety of predictions

*Searches for other modes are also important

Water Ch. detector for p-decays

High mass is possible (IMton ~ 20×Super-K)
 p→e⁺π⁰, vK⁺, and more can be searched with unprecedented sensitivities

• Excellent & well-proven performance

- Good ring-imaging capability at ~IGeV
- Excellent particle ID (e or μ) capability > 99%
- Energy resolution for e and μ ~3%

• Free protons are available

- No nuclear effect, Fermi motion
- High efficiency & good S/N separation

PID likelihood (atmv)

Experimental limits and models

Super-K provides world stringent limits
 T(p→e⁺π⁰)>1.4×10³⁴ years (90%C.L., 260kton • years)

► $\tau(p \rightarrow \nu K^+) > 5.9 \times 10^{33}$ years (90%C.L., 260kton · years)

Many models predict T=O(10³⁴⁻³⁵) years
Discovery could be around corner!

$p \rightarrow e^+ + \pi^0$ searches

Super-K cut

- 2 or 3 Cherenkov rings
- All rings are showering
- $85 < M_{\pi 0} < 185 MeV/c^2$ (3-ring)
- No decay electron
- $800 < M_{proton} < 1050 \text{ MeV/c}^2$ $P_{total} < 250 \text{ MeV/c}$

SK-II (half PMT) forward-backward display for $p \rightarrow e^+ + \pi^0$

under study.

▶ BG rate was confirmed by K2K accelerator v beam

$p \rightarrow v + K^+$ searches (II) $K^+ \rightarrow \pi^+ \pi^0$

PRD90, 072005 (2014)

 $\bullet \pi^0$ efficiency was improved by dedicated π^0 finding algorithm Shape information of π^+ hits for BG reduction

 $p \rightarrow v + K^+$ - 260 kton×years exposure (SK-I+II+III+IV)

- $T_{proton}/Br > 5.9 \times 10^{33}$ years @ 90%CL

Summary	y of	prom	pt \	/ and	ππ	searche	2S	L

	ary of p	prompt	y and nin sea	id it it searches		
PRD72,052 SK-I paper	2007 in 2005	91.7 kt y	14.6%	I.3 evts.		
PRD90, 072005 (2014) data		4) data	$p \rightarrow \nu K^+$	atmos. ν	atmos. ν	
		livetime	signal efficiency	estimated bkg.	bkg. rate $(evts/Mt/y)$	
	SK-I	91.7 kt y	$15.7 \pm 0.2\%$	0.3 evts.	2.8 ± 0.4	
	SK-II	49.2 kt y	$13.0\pm0.2\%$	0.3 evts.	6.2 ± 0.8	
	SK-III	31.9 kt y	$15.6\pm0.2\%$	0.1 evts.	3.1 ± 0.5	
	SK-IV	87.3 kt y	$\fbox{19.1\pm0.2\%}$	0.3 evts.	3.5 ± 0.4	11

Summary of Super-K

- $p \rightarrow e^+ + \pi^0$ reached to 10³⁴ yrs
- $(p,n) \rightarrow (e^+,\mu^+) + (\pi,\eta,\rho,\omega) \quad 10^{32} \sim 10^{33} \text{ yrs } P \rightarrow e^+ \eta$
- SUSY favored $p \rightarrow vK^+ > 5.9 \times 10^{33}$ yrs
- No excess in K^0_{S} , K^0_{L} , $\nu\pi^0$, $\nu\pi^+$
- test many decay modes
 - di-nucleon decays ($|\Delta B|=2$)
 - $pp \rightarrow K^+K^+ > 1.7 \times 10^{32}$ years
 - $pp \rightarrow e^+e^+ > 10^{33}$ years
 - $np \rightarrow (e^+, \mu^+, \tau^+) + v$
 - neutron-antineutron oscillations
 - $p \rightarrow (e^+, \mu^+) + vv$, $(e^+, \mu^+) + X$
 - radiative decays $p \rightarrow (e^+, \mu^+) + \gamma$

Only realistic proposal to reach the lifetime of 10³⁵ years for $p \rightarrow e^+\pi^0$

Discovery potential (2)

Experimental test on Supersymmetry

Hyper-K's sensitivities

Improvements in many modes by a factor ~ 10 Open for many decay modes including $p \rightarrow e^+ \pi^0$, $p \rightarrow \nu K^+$

Supernova

Why Supernova neutrinos?

Only neutrinos, with their extremely small interaction cross sections, can enable us to see into the interior of a star... John N. Bahcall, Phys. Rev. Lett. 12, 303 (1964)

Neutrinos hold the keys to solve many outstanding questions:

- What is the supernova explosion mechanism?
- What is the physics at high temperature and density?
- Do black holes form? How and when?
- What is the interior **environment** like?
- Was there a jet? An accretion disk?
- What nucleosynthesis products are made?
- What is the nature of physics at very high neutrino density?
- What are the properties of neutrinos?
- Which explosions are indeed core collapse?
-etc...

Slide adopted from Horiuchi@HK meeting

v burst @ Milky way (10kpc)

- High statistical observation by 200,000 ν events
- Explore core collapse and cooling mechanism (model)
 - Time variation of (v luminosity, temperature, flavor)
 - Ve from neutronization (20~56 evnts)
 - Precise moment when a neutron start is born.
- v property info. (absolute mass, mass hierarchy)

Supernova in nearby galaxies

- >50% efficiency is expected within 2 Mpc for requiring signal triplets (N>=3)
- Further study ongoing on E threshold and expected BG.

Supernova relic v (SRN)

 \bullet SRN is guaranteed signal which will provide precious information on SN rate and SN v spectrum

~300 SRN / 10 years (>17.5MeV) is expected

Wide range of V energy (0.1 GeV ~ 10⁴ GeV and beyond)
Wide range of V baseline (10km downward ~ 13,000km upward)
V_μ:V_e ~ 2:1 at production
V oscillation study by high statistical data (>40,000 events in Super-K) and all three flavors (V_e, V_μ, V_T)
Unique tests of V's exotic property (4th V, Lorentz violation, etc)

Atmospheric v

Test of Sterile v by atmospheric v

Look for extra overall muon deficit or shape distortion

Complementary to other experiments

Search for V's induced by dark matters

- provide complemental information w/ direct detection experiments
- Sensitive to low mass (GeV/c²) WIMPs

Expected sensitivity for Solar WIMPs WIMP-proton cross section[pb] WIMP-nucleon cross section[pb]

Summary

• Hyper-K would provide unique opportunities, many discovery potentials

- Proton decay searches w/ unprecedented sensitivities
 - $p \rightarrow e^+\pi^0$; $I \times I0^{35}$ yrs (5×10³⁴ yrs) with 90%(3 σ) CL
 - p→vK⁺; 3×10³⁴ yrs (1×10³⁴ yrs)
 - and many other modes
- SN ν in our galaxy, nearby galaxies, and distant galaxies (relic SN $\nu)$
 - promising ~300 diffuse v / 10 yrs
- WIMP annihilation v, tests of exotic scenarios ...
- CPV (76% of δ space at >3 σ), δ precision of <20°, Mass

hierarchy determination > 3\sigma (Nakaya@this meeting)

• w/ proven technology

Boost promoting the project

- Design Report to be submitted to KEK-IPNS/UTOKYO-ICRR in 2015
- Open for new collaborators
- Hyper-K EU meeting @ CERN on 27-28 April, 2015

Hyper-Kamiokande EU meeting@CERN 27-28 April 2015

- Meeting to discuss the European effort in Hyper-K
- Open to anyone who has interest in Hyper-K, or is planning to join Hyper-K, or is contributing
- http://indico.cern.ch/e/ThirdEUHyperK

Hyper-Kamiokande EU meeting	
27-28 April 2015	
CERN	N

Overview	
Timetable	
Registration	
Participant List	
Accommodation	

- Meeting to discuss the European effort in the Hyper-Kamiokande experiment.
- Open to anyone who has interests in Hyper-K, or is planning to join Hyper-K, or is contributing.
- Detailed information about your Country in Hyper-K can be discussed with your representatives in the Hyper-Kamiokande International Board Representatives, its chair if no representatives are available yet or the international Steering Committee chair.

Starts 27 Apr 2015 11:00 Ends 28 Apr 2015 18:00 Europe/Zurich

