Z'-induced FCNC Decays of Top, Beauty and Strange Quarks

Masaya Kohda (Chung Yuan Christian Univ., Taiwan)

Based on works with:

Kaori Fuyuto (Nagoya U.), Wei-Shu Hou (Nat'l Taiwan U.) [PRL114, 171802, and work in progress]

EPS HEP 2015 @ Vienna, July 24, 2015

Introduction

- Rare decays of top quark are good probes to see New Physics
- 1) Flavor Changing Neutral Current (FCNC) decays

ex.)
$$t \rightarrow c Z$$
, $t \rightarrow c h$

- ◆ Tiny SM rate due to
 - Loop suppression
 - CKM suppression
 - ➤ GIM (perfectly works)

Introduction

- Rare decays of top quark are good probes to see New Physics
- 1) Flavor Changing Neutral Current (FCNC) decays

ex.)
$$t \rightarrow c Z$$
, $t \rightarrow c h$

- ◆ Tiny SM rate due to
 - Loop suppression
- CKM suppression
 - GIM (perfectly works)
- 2) Direct production of new particle in top decay

ex.) charged Higgs (H⁺) search in t \rightarrow b H⁺

Introduction

- Rare decays of top quark are good probes to see New Physics
- 1) Flavor Changing Neutral Current (FCNC) decays

ex.)
$$t \rightarrow c Z$$
, $t \rightarrow c h$

- Tiny SM rate due to
 - Loop suppression
 - CKM suppression
 - GIM (perfectly works)
- 2) Direct production of new particle in top decay ex.) charged Higgs (H⁺) search in t \rightarrow b H⁺
- 3) New particle production in top FCNC decay

 $t \rightarrow c Z'$ Z': new massive gauge boson

- \bullet b \rightarrow s $\mu^+ \mu^-$ transitions are being precisely measured at LHC
- Overall agreement with SM, but two tantalizing hints

- \bullet b \rightarrow s $\mu^+ \mu^-$ transitions are being precisely measured at LHC
- Overall agreement with SM, but two tantalizing hints
 - 1) P_5 anomaly in $B^0 \to K^{*0} \mu^+ \mu^-$ decay angular distribution LHCb, PRL 111, 191801 (2013) [1/fb]; LHCb-CONF-2015-002 [3/fb]
 - > P₅': a form-factor free observable made from angular coefficients

- ullet b \rightarrow s μ^+ μ^- transitions are being precisely measured at LHC
- Overall agreement with SM, but two tantalizing hints
 - 1) P_5 ' anomaly in $B^0 \to K^{*0} \mu^+ \mu^-$ decay angular distribution LHCb, PRL 111, 191801 (2013) [1/fb]; LHCb-CONF-2015-002 [3/fb]
 - 2) Lepton flavor non-universality in B⁺ \rightarrow K⁺ l⁺ l⁻ (l = e, μ) decays LHCb, PRL 113, 151601 (2014) [3/fb]

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)} = 0.745^{+0.090}_{-0.074}(\mathrm{stat}) \pm 0.036(\mathrm{sys})$$

ightharpoonup 2.6 σ deviation from SM: $R_K^{SM}=1+\mathcal{O}(\frac{m_\mu^2}{m_b^2})$

- \bullet b \rightarrow s $\mu^+ \mu^-$ transitions are being precisely measured at LHC
- Overall agreement with SM, but two tantalizing hints
 - 1) P_5 ' anomaly in $B^0 \to K^{*0} \mu^+ \mu^-$ decay angular distribution LHCb, PRL 111, 191801 (2013) [1/fb]; LHCb-CONF-2015-002 [3/fb]
 - 2) Lepton flavor non-universality in B⁺ \rightarrow K⁺ I⁺ I⁻ (I = e, μ) decays LHCb, PRL 113, 151601 (2014) [3/fb]
- Both anomalies can be nicely explained by adding New Physics contribution to C₉ for muon, but not for electron
 - $ightharpoonup C_9$: Wilson coefficient in $\mathcal{H}_{\mathrm{eff}}\supset C_9(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{\alpha}\mu)$
 - ightharpoonup A global analysis tells: $\Delta C_9 \simeq -rac{1}{(34~{
 m TeV})^2}~$ (~ -25% of SM) Altmannshofer and Straub, 1411.3161

A new muon-specific gauge boson Z'

A new muon-specific gauge boson Z'

- A nice candidate is a Z' boson of gauged L_{μ} L_{τ} symmetry (μ -number minus τ -number) Altmannshofer et al., PRD89, 095033(2014)
 - > anomaly free He, Joshi, Lew and Volkas, PRD43,22(1991)

A new muon-specific gauge boson Z'

- A nice candidate is a Z' boson of gauged L_{μ} L_{τ} symmetry (μ -number minus τ -number) Altmannshofer et al., PRD89, 095033(2014)
 - > anomaly free He, Joshi, Lew and Volkas, PRD43,22(1991)
 - ightharpoonup Z' may couple to b -> s current via higher dim. operator including U(1)' Higgs field Φ

$$\frac{i}{\Lambda^2} (\Phi^* \overleftrightarrow{D_{\alpha}} \Phi) (\bar{s} \gamma^{\alpha} P_L b) - \frac{g' v_{\Phi}^2}{\Lambda^2} Z_{\alpha}' \bar{s} \gamma^{\alpha} P_L b$$

$$\langle \Phi \rangle = v_{\Phi} / \sqrt{2}$$

"b
$$\rightarrow$$
 s" to "t \rightarrow c"

Nonzero b_Ls_LZ' coupling implies nonzero t_Lc_LZ'

- If $m_{Z'} < m_t m_c$, the 2-body decay $t \rightarrow c Z'$ can happen!
 - \blacktriangleright This mass range is compatible with experimental data in the gauged L_{μ} L_{τ} model

Altmannshofer et al., PRD89, 095033(2014)

Plan of this talk

- Introduction
- The explicit mode for bsZ' and tcZ' couplings
- \bullet t \rightarrow c Z' for $m_{Z'} >> m_b$ (motivated by P_5' and R_K)
- t \rightarrow c Z' for $m_{Z'} << m_b$ (motivated by muon g-2)
- Discussion and summary

The model for bsZ' and tcZ' coupling

Altmannshofer, Gori, Pospelov and Yavin, PRD89, 095033(2014)

New matter fields

$$U(1)'$$
 Higgs Vector-like quarks $\Phi: ({f 1},{f 1})_{f 0}$ $Q: ({f 3},{f 2})_{+{f 1}/{f 6}}$ $U: ({f 3},{f 1})_{+{f 2}/{f 3}}$ $D: ({f 3},{f 1})_{-{f 1}/{f 3}}$ $\mathcal{O}_{U({f 1})'}=$ +1 +1 -1 -1

Q mixes with SM quarks via

$$\mathcal{L}_{\mathrm{int}} \supset Y_{Qq_i} \Phi \bar{Q}_R q_{iL}$$

The model for bsZ' and tcZ' coupling

Altmannshofer, Gori, Pospelov and Yavin, PRD89, 095033(2014)

New matter fields

$$\frac{\text{U(1)' Higgs}}{\Phi:(\mathbf{1},\mathbf{1})_{\mathbf{0}}} \qquad \frac{\text{Vector-like quarks}}{Q:(\mathbf{3},\mathbf{2})_{+\mathbf{1}/\mathbf{6}}} \qquad U:(\mathbf{3},\mathbf{1})_{+\mathbf{2}/\mathbf{3}} \qquad D:(\mathbf{3},\mathbf{1})_{-\mathbf{1}/\mathbf{3}}$$

$$\mathcal{Q}_{U(1)'}=$$
 +1 +1 -1

Q mixes with SM quarks via

The model for bsZ' and tcZ' coupling

Altmannshofer, Gori, Pospelov and Yavin, PRD89, 095033(2014)

New matter fields

$$\frac{\text{U(1)' Higgs}}{\Phi:(\mathbf{1},\mathbf{1})_{\mathbf{0}}} \qquad \frac{\text{Vector-like quarks}}{Q:(\mathbf{3},\mathbf{2})_{+\mathbf{1}/\mathbf{6}}} \qquad U:(\mathbf{3},\mathbf{1})_{+\mathbf{2}/\mathbf{3}} \qquad D:(\mathbf{3},\mathbf{1})_{-\mathbf{1}/\mathbf{3}}$$

$$\mathcal{Q}_{U(1)'}=$$
 +1 +1 -1

Q mixes with SM quarks via

Two major constraints on the model

$$540 \text{ GeV} \lesssim v_{\Phi} = m_{Z'}/g' \lesssim 5.6 \text{ TeV}$$

Two major constraints on the model

$$540 \text{ GeV} \lesssim v_{\Phi} = m_{Z'}/g' \lesssim 5.6 \text{ TeV}$$

1) Neutrino Trident Production: $\nu N \rightarrow \nu N \mu^+ \mu^-$

Altmannshofer, Gori, Pospelov and Yavin, PRL113, 091801(2014)

CCFR experiment

PRL66, 3117 (1991)

$$v_{\Phi} \gtrsim 540 \text{ GeV}$$

N.B.: $m_{Z'} \gtrsim 10~{\rm GeV}$ is assumed

Two major constraints on the model

$$540 \text{ GeV} \lesssim v_{\Phi} = m_{Z'}/g' \lesssim 5.6 \text{ TeV}$$

- 1) Neutrino Trident Production: $\nu N \rightarrow \nu N \mu^+ \mu^-$
- 2) B_s mixing: Altmannshofer et al. (2014); Crivellin et al. (2015)

– P $_5$ ' & R $_K$ anomalies —— $rac{|Y_{Qs}^*Y_{Qb}|}{2m_O^2}\simeqrac{1}{(34~{
m TeV})^2}$

$$\propto \frac{(Y_{Qs}^* Y_{Qb})^2}{m_Q^4} v_\Phi^2$$

➤ Demanding NP effect < 15%

$$v_{\Phi} \lesssim 5.6 \,\mathrm{TeV}$$

• A similar process $\mathbf{t} \to \mathbf{c} \ \mathbf{Z} (\to \mathsf{I}^+\mathsf{I}^-)$ was searched at LHC in $t\bar{t} \to qZ (\to \ell^+\ell^-) + bW (\to \ell\nu) \ (\ell=e,\mu,\tau)$

- The 95% CL upper limits for $t \rightarrow q Z (q = c, u)$:
- > CMS (full Run1) PRL112, 171802(2014)

$$\mathcal{B}(t \to qZ) < 5 \times 10^{-4}$$

> ATLAS (2.1/fb, 7TeV) JHEP1209.139

$$\mathcal{B}(t \to qZ) < 7.3 \times 10^{-3}$$

• A similar process $\mathbf{t} \to \mathbf{c} \ \mathbf{Z} (\to \mathsf{I}^+\mathsf{I}^-)$ was searched at LHC in $t\bar{t} \to qZ (\to \ell^+\ell^-) + bW (\to \ell\nu) \ (\ell=e,\mu,\tau)$

- The 95% CL upper limits for $t \rightarrow q Z (q = c, u)$:
- > CMS (full Run1) PRL112, 171802(2014) 14 TeV, 300/fb arXiv:1307.7135

$$\mathcal{B}(t \to qZ) < 5 \times 10^{-4}$$

$$\lesssim 10^{-5}$$

> ATLAS (2.1/fb, 7TeV) JHEP1209.139

$$\mathcal{B}(t \to qZ) < 7.3 \times 10^{-3}$$

$$\lesssim 10^{-4}$$

14 TeV, 300/fb arXiv:1307.7292

• A similar process $\mathbf{t} \to \mathbf{c} \ \mathbf{Z} (\to \mathsf{I}^+\mathsf{I}^-)$ was searched at LHC in $t\bar{t} \to qZ (\to \ell^+\ell^-) + bW (\to \ell\nu) \ (\ell=e,\mu,\tau)$

- The 95% CL upper limits for $t \rightarrow q Z (q = c, u)$:
- > CMS (full Run1) PRL112, 171802(2014) 14 TeV, 300/fb arXiv:1307.7135

$$\mathcal{B}(t \to qZ) < 5 \times 10^{-4}$$

$$\lesssim 10^{-5}$$

> ATLAS (2.1/fb, 7TeV) JHEP1209.139 14 TeV, 300/fb arXiv:1307.7292

$$\mathcal{B}(t \to qZ) < 7.3 \times 10^{-3}$$

$$\lesssim 10^{-4}$$

• An advantage for $t \rightarrow c Z'(\rightarrow l^+l^-)$ search:

$$\mathcal{B}(Z' \to \ell^+ \ell^-) \simeq 2/3 \gg \mathcal{B}(Z \to \ell^+ \ell^-) \simeq 3 \times 3.4\% \simeq 10\%$$

(for $m_{Z'} > 2m_{\tau}$)

• A similar process $\mathbf{t} \to \mathbf{c} \ \mathbf{Z} (\to \mathsf{I}^+\mathsf{I}^-)$ was searched at LHC in $t\bar{t} \to qZ (\to \ell^+\ell^-) + bW (\to \ell\nu) \ (\ell=e,\mu,\tau)$

- The 95% CL upper limits for $t \rightarrow q Z (q = c, u)$:
- > CMS (full Run1) PRL112, 171802(2014) 14 TeV, 300/fb arXiv:1307.7135

$$\mathcal{B}(t \to qZ) < 5 \times 10^{-4} \qquad \qquad \lesssim 10^{-5}$$

● An advantage for t →

$$\mathcal{B}(Z' \to \ell^+ \ell^-) \simeq 2/3$$

(for $m_{Z'} > 2m$

 $|Z'(\rightarrow I^+I^-)|$ search:

$$\gg \mathcal{B}(Z \to \ell^+ \ell^-) \simeq 3 \times 3.$$
 $\delta \simeq 10\%$

• Naïve expectation for IMS sensitivity on $t \rightarrow c Z'$

$$\mathcal{B}(t \to cZ') \lesssim 8 \times 10^{-5} \qquad \qquad \lesssim 2 \times 10^{-6}$$

$t \rightarrow c Z'$ rate predicted by $P_5' \& R_K$

$$\mathcal{B}(t \to cZ')_{\text{LH}} \simeq \frac{(1 - x')^2 (1 + 2x')}{2(1 - x_W)^2 (1 + 2x_W)} \frac{|Y_{Qt}Y_{Qc}^*|^2}{4m_Q^4} v^2 v_{\Phi}^2$$
with $x' = \frac{m_{Z'}^2}{m_t^2} x_W = \frac{m_W^2}{m_t^2}$

$t \rightarrow c Z'$ rate predicted by $P_5' \& R_K$

$$\frac{{\rm P_5'~\&~R_K~anomalies}}{\frac{|Y_{Qs}^*Y_{Qb}|}{2m_Q^2}} \simeq \frac{1}{(34~{\rm TeV})^2}$$

SU(2)_L

$$\mathcal{B}(t\to cZ')_{\rm LH}\simeq \frac{(1-x')^2(1+2x')}{2(1-x_W)^2(1+2x_W)} \underbrace{\frac{|Y_{Qt}Y_{Qc}^*|^2}{4m_Q^4}} v^2v_\Phi^2$$
 with $x'=\frac{m_{Z'}^2}{m_t^2}$ $x_W=\frac{m_W^2}{m_t^2}$

$t \rightarrow c Z'$ rate predicted by $P_5' \& R_K$

$$\begin{array}{c} \text{P}_{\text{5}}\text{'} \& \text{R}_{\text{K}} \text{ anomalies} \\ \\ \frac{|Y_{Qs}^*Y_{Qb}|}{2m_Q^2} \simeq \frac{1}{(34 \text{ TeV})^2} \end{array}$$

SU(2)_L

$$\mathcal{B}(t \to cZ')_{\text{LH}} \simeq \frac{(1-x')^2(1+2x')}{2(1-x_W)^2(1+2x_W)} \left(\frac{|Y_{Qt}Y_{Qc}^*|^2}{4m_Q^4} \right) v^2 v_{\Phi}^2$$

ullet Applying constraints on v_{Φ} ,

with
$$x' = \frac{m_{Z'}^2}{m_t^2}$$
 $x_W = \frac{m_W^2}{m_t^2}$

$$0.8 \times 10^{-8} \lesssim \mathcal{B}(t \to cZ')_{LH} \lesssim 0.8 \times 10^{-6}$$

t → c Z' via RH current

 Right-Handed tcZ' coupling, mediated by SU(2) singlet quark U, is unconstrained by b → s data

ightharpoonup BR(t
ightharpoonup cZ') contours for $m_{Z'} = 50$ GeV, g' = 0.064, $v_{\Phi} = 780$ GeV, $m_{U} = 2.5$ TeV

t → c Z' via RH current

 Right-Handed tcZ' coupling, mediated by SU(2) singlet quark U, is unconstrained by b → s data

ightharpoonup BR(t
ightharpoonup cZ') contours for $m_{Z'} = 50$ GeV, g' = 0.064, $v_{\Phi} = 780$ GeV, $m_{U} = 2.5$ TeV

 BR(t → c Z') ~ 10⁻⁴ is possible, but not more to keep small mixing angle for U-t and U-c

$$\delta_{Uq} \equiv \frac{Y_{Uq}v_{\Phi}}{\sqrt{2}m_U} \quad (q=t,c)$$

t → c Z' via RH current

 Right-Handed tcZ' coupling, mediated by SU(2) singlet quark U, is unconstrained by b → s data

ightharpoonup BR(t
ightharpoonup cZ') contours for $m_{Z'} = 50$ GeV, g' = 0.064, $v_{\Phi} = 780$ GeV, $m_{U} = 2.5$ TeV

BR(t → c Z') ~ 10⁻⁴ is possible, but not more to keep small mixing angle for U-t and U-c

$$\delta_{Uq} \equiv \frac{Y_{Uq}v_{\Phi}}{\sqrt{2}m_U} \quad (q=t,c)$$

What if the Z' is extremely light?

- Cannot explain P_5' and R_K anomalies
- But, motivated by the muon g-2 anomaly
 Baek, Deshpande, He and Ko (2001)

What if the Z' is extremely light?

Cannot explain P₅' and R_K anomalies

 $m_{Z'} << m_b$

But, motivated by the muon g-2 anomaly

Baek, Deshpande, He and Ko (2001)

The Z' can explain the anomaly only if

 $m_{Z'} \lesssim 400 \, \mathrm{MeV}$

Altmannshofer et al., PRL113, 091801(2014)

favored by $(g-2)_{\mu}$

What if the Z' is extremely light?

Cannot explain P₅' and R_K anomalies

m_{z'} << m_b

- But, motivated by the muon g-2 anomaly
 Baek, Deshpande, He and Ko (2001)
- The Z' can explain the anomaly only if

$$m_{Z'} \lesssim 400 \, \mathrm{MeV}$$

Altmannshofer et al., PRL113, 091801(2014)

 Striking collider signature: muon pairs from t → c Z' are collimated

Muon g-2 motivated t → c Z' via LH current

• For the light Z', left-handed **tcZ'** coupling is strongly constrained, as $b \rightarrow s \mu^+ \mu^-$ goes through the 2-body decay $b \rightarrow s Z' (\rightarrow \mu^+ \mu^-)$, with on-shell Z', and LH bsZ' coupling is tightly bounded

B-factories and LHCb data imply

$$\mathcal{B}(t \to cZ')_{\rm LH} \lesssim 2 \times 10^{-14}$$
 <- far below CMS (300/fb)

Fuyuto, Hou and MK, in preparation

Muon g-2 motivated $t \rightarrow c Z'$ via RH current

Fuyuto, Hou and MK, arXiv:1412.4397

 For the light Z', the right-handed tcZ' coupling is also constrained by meson decays

At one-loop, U-t and U-c mixing induces effective bsZ'/sdZ'

coupling

• The loop suppression is compensated by the two-body enhancement in the B and K decays, e.g., B \rightarrow K Z'($\rightarrow \mu\mu$)

Loop-induced bsZ'/sdZ' couplings

- Some assumptions:
 - For simplicity, the mixings with Q, D quarks are turned off
 - > U-u mixing is also turned off to satisfy D-meson mixing/decay constraints
- $\begin{array}{ll} \bullet \text{ Loop induced bsZ' coupling:} & g_{sb}\bar{s}_L\gamma^{\alpha}b_LZ'_{\alpha} \\ g_{sb} = \frac{g'v_{\Phi}^2}{32\pi^2v^2} \left[c_{cc}f_{cc} + (c_{tc}+c_{ct})f_{ct} + c_{tt}f_{tt}\right] \stackrel{s(b)}{=} \\ \text{with } c_{ij} = V_{ib}V_{js}^*Y_{Ui}Y_{Uj}^*m_im_j/m_U^2 \\ & \left\{ f_{ct} \simeq 1 + \log\frac{m_U^2}{m_t^2} + \frac{3m_W^2}{m_t^2 m_W^2}\log\frac{m_t^2}{m_W^2}, \quad f_{tt} \simeq \frac{3m_W^2}{m_t^2 m_W^2} \left(1 \frac{m_W^2}{m_t^2 m_W^2}\log\frac{m_t^2}{m_W^2}\right) + \log\frac{m_U^2}{m_t^2}, \\ f_{cc} \text{ is obtained by } m_c^2 \ll m_W^2 \end{array}$

Relevant measurements for $b \rightarrow s Z' \& s \rightarrow d Z'$

Bottom FCNC decays

[mass range]

ullet Binned B+ ullet K+ $\mu^+\mu^-$ spectrum by LHCb (1/fb, 7 TeV) JHEP1302.105 $m_{Z'}\gtrsim 224~{
m MeV}$

N.B.: Full Run1 results by LHCb cover only the half of $(g-2)_{\mu}$ region $(m_{Z'} > 316 \text{ MeV})$ JHEP1406.133

• B⁺ \rightarrow K^{*} X($\rightarrow \mu^+\mu^-$) search by Belle PRL105, 091801(2010)

 $m_{Z'} \in (212, 300) \,\mathrm{MeV}$

• Binned B \rightarrow K^(*) $\nu\nu$ search by BaBar PRD87, 112005(2013)

 $m_{Z'} \ge 0$

Strange FCNC decays

- Binned K⁺ $\rightarrow \pi^+ \mu^+ \mu^-$ spectrum by NA48/2 PLB697, 107(2011) $m_{Z'} \in (211, 354) \, \mathrm{MeV}$
- $K_L \rightarrow \pi^0 \mu^+ \mu^-$ search by KTeV PRL84, 5279(2000)

- $m_{Z'}\in(211,350)\,\mathrm{MeV}$
- K⁺ $\rightarrow \pi^+$ X ($\rightarrow \nu \nu$) search by E949 PRD79, 092004(2009) $m_{Z'} \in (0, 125) \text{ or } (150, 260) \text{ MeV}$
- $K_1 \rightarrow \pi^0 \nu \nu$ search by E391a PRD81, 072004(2010)

 $m_{Z'} \lesssim 363 \, \mathrm{MeV}$

Relevant measurements for $b \rightarrow s Z' \& s \rightarrow d Z'$

Bottom FCNC decays

[mass range]

ullet Binned B+ ullet K+ $\mu^+\mu^-$ spectrum by LHCb (1/fb, 7 TeV) JHEP1302.105 $m_{Z'}\gtrsim 224~{
m MeV}$

N.B.: Full Run1 results by LHCb cover only the half of $(g-2)_{\mu}$ region $(m_{Z'} > 316 \text{ MeV})$ JHEP1406.133

- $B^+ \to K^* X(-$
- \succ Z' with mass around m_{π} can evade K⁺ decay experiments, while it is sensed by K_I decay
- Binned B →
- This leads to the apparent violation of Grossman-Nir bound Fuyuto, Hou and MK, PRL114, 171802
- Strange FC
- ➤ See talk by W.-S. Hou in flavor session (7/24, 11:50~)
- Binned K† →

MeV

leV

• $K_L \rightarrow \pi^0 \mu^+ \mu^-$ search by KTeV PRL84, 5279(2000)

- $m_{Z'} \in (211, 350) \,\mathrm{MeV}$
- K⁺ $\rightarrow \pi^+$ X ($\rightarrow \nu \nu$) search by E949 PF D79, 092004(2009) $m_{Z'} \in (0, 125) \text{ or } (150, 260) \text{ MeV}$
- $K_L \to \pi^0 \nu \nu$ search by E391a PRD8, 072004(2010)

 $m_{Z'} \lesssim 363 \,\mathrm{MeV}$

Constraint from B⁺ \rightarrow K⁺ $\mu^+\mu^-$

- Z' would show up as a spike in $q^2 = m_{\mu\mu}^2$ distribution
- 1 fb⁻¹ result of LHCb probes down to

$$q^2 > 0.05 \, {
m GeV}^2 \simeq (224 \, {
m MeV})^2$$
 JHEP 02 (2013) 105

$B^0 \to K^{*0} \chi(\to \mu\mu)$ search by LHCb

Exclusion limit

Talk by A. Mauri in this conference

No deviation from the background only hypothesis is observed

- We set a 95% CL upper limit as function of mass and lifetime of the new particle (in the LHCb accessible range)
- The new particle is assumed to be a scalar
- Lower lifetimes have better limit due to higher reconstruction efficiency

Constraint from K⁺ $\rightarrow \pi^+ \mu^+ \mu^-$

● NA48/2@CERN SPS: most precise single measurement

 $Y_{Uu_i}\Phi^{\dagger}\bar{U}P_Ru_i$

Benchmark
$$m_{Z'} = 285 \text{ MeV}, \ g' = 1.3 \times 10^{-3}, \ m_U = 2 \text{ TeV}$$

 $Y_{Uu_i}\Phi^{\dagger}\bar{U}P_Ru_i$

Benchmark
$$m_{Z'} = 285 \text{ MeV}, \ g' = 1.3 \times 10^{-3}, \ m_U = 2 \text{ TeV}$$

Excluded by $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ at 2σ

 \triangleright weakest at $m_{7'} = 285 \text{ MeV}$

[Fuyuto, Hou and MK, in preparation]

 $Y_{Uu_i}\Phi^{\dagger}\bar{U}P_Ru_i$

Benchmark
$$m_{Z'} = 285 \text{ MeV}, \ g' = 1.3 \times 10^{-3}, \ m_U = 2 \text{ TeV}$$

Excluded by $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ at $2\sigma^-$

 \triangleright weakest at $m_{7'} = 285 \text{ MeV}$

Allowed by B⁺ \rightarrow K⁺ μ ⁺ μ ⁻ at 2 σ

[Fuyuto, Hou and MK, in preparation]

 $Y_{Uu_i}\Phi^{\dagger}\bar{U}P_Ru_i$

Benchmark
$$m_{Z'} = 285 \text{ MeV}, \ g' = 1.3 \times 10^{-3}, \ m_U = 2 \text{ TeV}$$

Excluded by $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ at 2σ

 \triangleright weakest at $m_{7} = 285 \text{ MeV}$

Allowed by B⁺ \rightarrow K⁺ μ ⁺ μ ⁻ at 2 σ

- More sensitive to Y_{Ut} than Y_{Uc} , due to chiral factor m_t/m_c in the loop-induced bsZ'/sdZ' coupling
- BR(t \rightarrow c Z') contours are shown by solid-black lines

[Fuyuto, Hou and MK, in preparation]

RH-current induced $t \rightarrow c Z'$ rates

Fuyuto, Hou and MK, in preparation

(1) Normal Yukawa hierarchy

- $ightharpoonup B^+
 ightharpoonup K^+ \mu\mu$ data pushes down to BR(t ightharpoonup c Z') < 10^{-9}
- -> far below sensitivity of CMS (300/fb)

RH-current induced $t \rightarrow c Z'$ rates

Fuyuto, Hou and MK, in preparation

(1) Normal Yukawa hierarchy $Y_{Ut}=1, Y_{Uc}=\lambda$

(2) Flipped Yukawa hierarchy

Y_{Ut}=λ, Y_{Uc}=1

- $ightharpoonup B^+
 ightharpoonup K^+ \mu\mu$ data pushes down to BR(t ightharpoonup c Z') < 10^{-9}
- -> far below sensitivity of CMS (300/fb)
- $ightharpoonup K^+
 ightharpoonup \pi^+ \mu\mu$ data imposes BR(t ightharpoonup c Z') < 10⁻⁵
 - -> CMS (300/fb) sensitivity is barely attained

Discussion: $t \rightarrow c \phi$

Hou and MK, in preparation

- ullet The model predicts FCNC couplings with U(1)' Higgs ϕ
- ullet This leads to t \rightarrow c $\phi \rightarrow$ c Z' Z' \rightarrow c + 4 μ
- ullet For m_{ϕ} , $m_{Z'} << m_t$, BR(t ightarrow c ϕ) $^{\sim}$ BR(t ightarrow c Z')

ullet If ϕ is lighter than top, this decay mode may be more promising due to distinct signature

Summary

- We studied allowed ranges for the t \rightarrow c Z' rate based on a gauged L_{μ} L_{τ} model
- 2 scenarios are considered

$$B(t \rightarrow c Z')$$
 range

(1) Heavy Z': $m_b \ll m_{Z'}$ ($< m_t - m_c$) motivated by P_5 & R_K anomalies

< 10⁻³

- Within reach of CMS with Run 1 dataset!
- (2) Light Z': $m_{Z'}$ < 400 MeV motivated by muon g-2 anomaly

< 10⁻⁹ (normal)

< 10⁻⁵ (flipped)

Seemingly beyond reach of near future LHC in most parts of the parameter space

Back Up Slides

Some hints of NP in $b \rightarrow s$ transitions

P₅ ' anomaly in angular distribution of

$$B \rightarrow K^*(\rightarrow K^+\pi^-) \mu^+\mu^-$$

 $\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2}$

$$\begin{split} &= \frac{9}{32\pi} \bigg[\frac{3}{4} (1 - F_L) \sin^2\!\theta_K + F_L \cos^2\!\theta_K + \frac{1}{4} (1 - F_L) \sin^2\!\theta_K \cos\!2\theta_\ell \\ &- F_L \cos^2\!\theta_K \cos\!2\theta_\ell + S_3 \sin^2\!\theta_K \sin^2\!\theta_\ell \cos\!2\phi + S_4 \sin\!2\theta_K \sin\!2\theta_\ell \cos\!\phi \\ &+ S_5 \sin\!2\theta_K \sin\!\theta_\ell \cos\!\phi + S_6 \sin^2\!\theta_K \cos\!\theta_\ell + S_7 \sin\!2\theta_K \sin\!\theta_\ell \sin\!\phi \\ &+ S_8 \sin\!2\theta_K \sin\!2\theta_\ell \sin\!\phi + S_9 \sin^2\!\theta_K \sin\!2\theta_\ell \sin\!2\phi \bigg], \end{split}$$

LHCb, PRL 111, 191801 (2013)

 3.7σ discrepancy

* 2.5 σ in better controlled 1 - 6 GeV²

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

Lifetime and BR for light Z', motivated by $(g-2)_{\mu}$

K. Fuyuto, W.-S. Hou, MK, in preparation

$b \rightarrow s Z'$ formulas

Fuyuto, Hou and MK, arXiv:1412.4397

lacktriangle Loop induced bsZ' coupling: $g_{sb}ar{s}_L\gamma^{lpha}b_LZ_{lpha}'$

$$g_{sb}\bar{s}_L\gamma^{\alpha}b_LZ'_{\alpha}$$

$$\int f_{ct} \simeq 1 + \log \frac{m_U^2}{m_t^2} + \frac{3m_W^2}{m_t^2 - m_W^2} \log \frac{m_t^2}{m_W^2}, \quad f_{tt} \simeq \frac{3m_W^2}{m_t^2 - m_W^2} \left(1 - \frac{m_W^2}{m_t^2 - m_W^2} \log \frac{m_t^2}{m_W^2}\right) + \log \frac{m_U^2}{m_t^2},$$

$$f_{cc} \text{ is obtained by } m_c^2 \ll m_W^2$$

ullet B igraph K Z' branching ratio (similar for Kaon decays):

$$\mathcal{B}(\bar{B} \to \bar{K}Z') = \tau_B \frac{|g_{sb}|^2}{64\pi} \frac{m_B^3}{m_{Z'}^2} \lambda^{3/2} \left(1, \frac{m_K^2}{m_B^2}, \frac{m_{Z'}^2}{m_B^2}\right) [f_+^{B \to K}(m_{Z'}^2)]^2$$
where $\lambda(x, y, z) \equiv x^2 + y^2 + z^2 - 2(xy + xz + yz)$

 $f_{+}^{B\to K}$: B \rightarrow K form factor Ball and Zwicky, PRD71, 014015(2005)

Constraint from B \rightarrow K $\mu^+\mu^-$

- Z' would show up as a spike in $q^2 = m_{\mu\mu}^2$ distribution
- 3 fb⁻¹ results by LHCb JHEP 06 (2014) 133

$$q^2 \lesssim 0.16 \, \mathrm{GeV}^2$$

- best place to search Z'
- less statistics

- photon peak pollution
- ullet However, LHCb sets the cut $q^2>0.1~{
 m GeV}^2\simeq (316~{
 m MeV})^2$
 - => This constraint can be avoided if $m_{Z'}$ < 316 MeV

Belle's search for B \rightarrow K*X ($\rightarrow \mu^+\mu^-$)

PRL105, 091801(2010)

$M_{\mu\mu} \over ({\rm MeV}/c^2)$	$B^0 \to K^{*0} X, \ K^{*0} \to K^+ \pi^-, \ X \to \mu^+ \mu^-$				
	$N_{ m obs}$	$N_{ m bg}$	ϵ	S_{90}	U.L.
212.0	0	$0.03^{+0.01}_{-0.01} \ (0.03^{+0.01}_{-0.01})$	23.8 (23.7)	2.43 (2.43)	(10^{-8}) 2.34 (2.34)
214.3	0	$0.13^{+0.04}_{-0.03} \ (0.13^{+0.04}_{-0.03})$	23.6 (23.5)	2.33 (2.33)	2.26 (2.27)
220.0	0	$0.13^{+0.02}_{-0.02} (0.13^{+0.02}_{-0.02})$	23.0 (22.9)	2.33 (2.33)	2.31 (2.33)
230.0	1	$0.24^{+0.02}_{-0.02} \ (0.25^{+0.02}_{-0.02})$	21.4 (21.4)	4.09 (4.12)	4.37 (4.40)
240.0	0	$0.38^{+0.02}_{-0.02} (0.39^{+0.02}_{-0.02})$	20.0 (20.0)	2.09 (2.09)	2.40 (2.39)
250.0	0	$0.51^{+0.01}_{-0.01} (0.51^{+0.01}_{-0.01})$	18.0 (18.4)	1.92 (1.94)	2.43 (2.41)
260.0	0	$0.63^{+0.01}_{-0.01} (0.63^{+0.01}_{-0.01})$	16.5 (17.2)	1.83 (1.83)	2.54 (2.43)
270.0	0	$0.75^{+0.02}_{-0.02} \ (0.75^{+0.02}_{-0.02})$	15.4 (16.4)	1.76 (1.76)	2.61 (2.45)
280.0	0	$0.69^{+0.03}_{-0.03} \ (0.86^{+0.04}_{-0.04})$	14.6 (15.8)	1.78 (1.69)	2.78 (2.45)
290.0	1	$0.98^{+0.06}_{-0.06} \ (0.97^{+0.06}_{-0.06})$	14.0 (15.5)	3.35 (3.37)	5.47 (4.99)
300.0	1	$1.08^{+0.08}_{-0.08} \ (1.08^{+0.08}_{-0.08})$	13.6 (15.1)	3.28 (3.28)	5.53 (4.97)

<-- 90%CL upper limit

Constraint from B \rightarrow K $\nu \nu$

- Belle & BaBar's sensitivities are ~ 10 x BR(SM)
- BaBar's result is sensitive to low mass Z'
 PRD87, 112005(2013)

constraint on New Physics effect in 1st bin

$$s_B \equiv \frac{m_{\nu\nu}^2}{m_B^2} \in (0, 0.1) \quad m_{Z'} \in (0, 1670) \text{ MeV}$$

$$\Delta \mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{(0,0.1)} = (0.35^{+0.60}_{-0.15}) \times 10^{-5}$$

$$\Delta \mathcal{B}(B^0 \to K^0 \nu \bar{\nu})_{(0,0.1)} = (-0.2^{+1.8}_{-0.1}) \times 10^{-5}$$

$$\Delta \mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})_{(0,0.1)} = (-0.1^{+1.9}_{-0.3}) \times 10^{-5}$$

$$\Delta \mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{(0,0.1)} = (1.1^{+1.9}_{-0.6}) \times 10^{-5}$$

N.B. These are supplied by genuine experiments

55

Allowed Region: m_{z'} = 135 MeV

$$g' = 10^{-3}, v_{\Phi} = 135 \,\text{GeV}, m_U = 2 \,\text{TeV}$$

- **E391a** set better limit than E949 in some region
- "GN" is usual GN bound, which should not be applied in this case

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \lesssim 1.4 \times 10^{-9}$$

K_L → π⁰ Z' can go beyond
 "GN" bound
 (favored by the BaBar data)