Higgs and BSM physics at CLIC

Sophie Redford (CERN) on behalf of the CLICdp collaboration

Future linear electron-positron collider providing high luminosity: few x 10³⁴ cm⁻²s⁻¹

CLIC would be implemented in energy stages, defined by physics and technical considerations Staged construction gives access to three centre of mass energies:

Stage 1: 500 fb⁻¹ at \sqrt{s} = 350 GeV

SM Higgs and top physics, top threshold scan see future Stage 2: 1.5 ab^{-1} at $\sqrt{s} = 1.4$ TeV

see "Top quark physics at a future linear collider" R. Poeschl

Improved Higgs precision, top Yukawa coupling, first BSM searches Stage 3: 2 ab⁻¹ at $\sqrt{s} = 3$ TeV

Rarest Higgs processes, double Higgs production, best BSM sensitivity Each stage corresponds to 4-5 years data taking

Detectors, beam conditions and backgrounds

Physics studies in this talk use the CLIC_SiD and CLIC_ILD detector concepts

CLIC beams consist of short dense bunch trainsenables power-pulsing, triggerless readout

results in pile-up of beam-induced backgrounds

tt event plus 60 bunch crossings of beam-induced background

Single Higgs production at CLIC

Higgsstrahlung at \sqrt{s} = 350 GeV

Identify HZ events from only the Z recoil mass: model independent measurement of g_{HZZ}

- ▶ very clean for $Z \rightarrow \mu\mu$, ee decays: 2% uncertainty on g_{HZZ}
- ▶ also possible for hadronic Z decays with minimal bias: 0.9% uncertainty on g_{HZZ}

Combined uncertainty 0.8% on model independent measurement of g_{HZZ}

Cross section x branching ratio measurements:
precision at few % level
Constrain the invisible Higgs decay < 1% at 90% CL

	Stat precision	
σ(ZH)xBR(H→ττ)	6.2%	su
σ(ZH)xBR(H→bb)	1%	bean
σ(ZH)xBR(H→cc)	5%	ed b
σ(ZH)xBR(H→gg)	6%	aris
σ(ZH)xBR(H→WW*)	2%	loar
σ(Hvv)xBR(H→bb)	3%	

5

6

Precision Higgs measurements at \sqrt{s} > 1 TeV

H→bb, cc, gg

Separation of the different hadronic final states uses precise flavour tagging

very challenging at the LHC

Higgs mass can be extracted from the H \rightarrow bb invariant mass distribution: ±33 MeV at 3 TeV

	3 TeV	ams
σ(Hvv)xBR(H→bb)	0.2%	ed be
σ(Hvv)xBR(H→cc)	2.7%	laris
σ(Hvv)xBR(H→gg)	1.8%	oqun

Rare Higgs decays at $\sqrt{s} > 1$ TeV

Top Yukawa coupling at $\sqrt{s} = 1.4$ TeV

Comparable to other measurements at 1 TeV

2 2.5 3 Higgs decay angle (rad)

0.5

1.5

Double Higgs production at \sqrt{s} > 1 TeV

The HHvv cross section is sensitive to the Higgs self-coupling and the quartic coupling Only 225 (1200) HHvv events at \sqrt{s} = 1.4 (3) TeV

high luminosity and high energy crucial

		1.4 TeV	3 TeV
Events forced to 4-jet topology	<mark>Δ(g</mark> ннww)	7%	3%
Jets paired by hemisphere/to minimise mass χ^2	Δ(λ)	32%	16%
Template fit to extract sensitivity	<mark>Δ(λ)</mark> P(e) = -80%	24%	12%

Model-independent fit to Higgs properties

Fully model independent fit

- only possible at lepton colliders
- stems from model independent measurement of g_{HZZ}
- Higgs width extracted with 5-3.5% precision

Model dependent fit

- ▶ as at LHC (no invisible H decays)
- sub-% precision at high energy
- Higgs width extracted with <1% precision</p>
- but results depend strongly on fit assumptions

Prospects for BSM physics at CLIC

Direct searches via pair-production of new particles up to the kinematic limit M < \sqrt{s} / 2

three SUSY models used to benchmark performance:

Indirect searches via precision measurements of known variables, comparison with SM

sensitive to, for example, Z' bosons and composite Higgs

Sleptons and gauginos at \sqrt{s} = 3 TeV

12

Heavy Higgs bosons at $\sqrt{s} = 3$ TeV

Heavy Higgs bosons (~degenerate in mass) would produce complex final states of heavy-flavour jets

 $e^+e^- \to HA \to b\bar{b}b\bar{b}$ $e^+e^- \to H^+H^- \to t\bar{b}b\bar{t}$

Separation requires heavy-flavour tagging

accuracy of Higgs mass measurements ~0.3%

Indirect searches

- total cross section
- forward-backward asymmetry
- Ieft-right asymmetry (requires beam polarisation)

Sensitive to Z' bosons, reach up to 10s of TeV

Composite Higgs theories (bound state of fermions)

- **m**_ρ: mass of the vector resonance
- **ξ**: strength of Higgs interactions

CLIC reach from single Higgs production provides an indirect probe of Higgs composite scale up to 70 TeV

Summary

CLIC offers a strong physics programme throughout its three energy stages

Higgs physics at CLIC

- model independent measurement of g_{HZZ}
- high statistics: precision measurements and rare decays
- top Yukawa coupling and Higgs self-coupling
- combined, model independent fit of Higgs parameters

BSM physics at CLIC

- direct searches possible up to the kinematic limit
- mass measurements of SUSY particles with %-level precision
- indirect searches increase reach to tens of TeV

If you want to know more

CLIC CDR vol 2 Physics and Detectors CERN-2012-003 arxiv: 1202.5940 CLIC CDR vol 3 The CLIC Programme CERN-2012-005 arxiv: 1209.2543 CLIC Snowmass White Paper Physics at CLIC arxiv: 1307.5288

Optimising the first energy stage

Higgs couplings:

- Requires access to Higgsstrahlung and WW-fusion: g_{HZZ}, g_{HWW}, Γ_H, couplings to fermions...
- $\blacktriangleright \sqrt{s}$ = 350 GeV a good compromise
- But results may profit from higher energy&luminosity

Top physics:

Threshold scan requires $\sqrt{s} = 360 \text{ GeV}$

CLIC with \sqrt{s} > 1 TeV will give best perspectives. But in some areas the first energy stage can already improve significantly on HL-LHC:

- Top A_{fb} and top couplings to Z, γ , W need \sqrt{s} > 400 GeV
- ▶ It might be worth adapting the first stage to enable these studies

$$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to WW^* \propto \frac{g_{HWW}^4}{\Gamma_H})$$