

Support: Ministry of Education SR, Agr. 0663/2014 APVV 0050-11

Blast-wave fits with resonances to p, spectra from **Pb+Pb collisions at** $\sqrt{s_{NN}}$ = 2.76 TeV

Ivan Melo^{a,b}, Boris Tomášik^{b,c}

^aŽilinská Univerzita, Žilina, Slovakia

^bUniverzita Mateja Bela, Banská Bystrica, Slovakia

^cFaculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, Czech Republic melo@fyzika.uniza.sk

1. Motivation

Find temperature and transverse expansion of the freeze-out state of the fireball by fits to p. spectra of various hadron species with resonance decays included

Data from ALICE collaboration: π ,K,p [1]; K⁰, Λ [2]; Ξ , Ω [3]; K^{*}, Φ [4]

Scenario with two freeze-outs: $T_{crit} \ge T_{chemical} \ge T_{kinetic} \equiv T$

Resonance decays are included with abundances given by T

We implemented blast-wave model with resonances as Monte Carlo \rightarrow DRAGON

2. DRAGON: MC blast-wave model

Monte Carlo implementation of the emission function with 277 resonances [5] Included baryonic resonances up to 2 GeV and mesonic resonances up to 1.5 GeV. Strong decays, also cascading decays.

Spectra given by
$$\frac{dN}{dy \ d^2 p_t} = \int d\Sigma_{\mu} p^{\mu} \frac{1}{\exp \frac{p_{\mu} u^{\mu}}{T} \pm 1} = \int d^4 x S(x, p)$$

$$S(x,p)d^4x = \delta(\tau - \tau_{\rm fo}) m_t \cosh(\eta_s - y) \Theta(R - r) \ imes rac{1}{\exp rac{p_\mu u^\mu}{T} \pm 1} au \, d au \, d\eta_s \, r \, dr \, d\varphi$$

4. Fit results on thermal parameters

π , p,K, Λ fits η_f n $\langle v_t angle$ $\chi^2/N_{ m dof}$ $N_{ m dof}$ centrality [MeV]

	[MeV]						(MeV)					
0 - 5%	98	$0.88 \ 0.69$	0.654	0.214	194							
5 - 10%	98	0.88 0.71	0.649	0.266	197	0–10%	126	0.82	0.71	0.605	0.375	4
10-20%	106	0.87 0.71	0.642	0.272	210	10 - 20%	138	0.81	0.85	0.568	0.325	4
20-40%	114	0.86 0.81	0.612	0.294	202	20 - 40%	158	0.78	0.91	0.536	0.417	3
40-60%	138	$0.82 \ 0.99$	0.548	0.347	195	40-60%	174	0.76	1.11	0.489	0.497	3
60-80%	166	$0.77 \ 1.43$	0.449	0.449	168	60-80%	250	0.64	1.35	0.382	0.795	3

centrality T

 Ξ, Ω fits

 $\langle v_t \rangle$

 $\chi^2/N_{\rm dof}$ $N_{\rm dof}$

Transverse expansion velocity $v_t = \tanh \eta_t = \eta_f \left(\frac{r}{R}\right)^n$

Chemical composition given by T_{ch} = 152 MeV and μ_{B} = 1 MeV. In the fits we vary: T, η_{f} ,n.

Comparison of ALICE fits to π , K, p with no resonances [1] (2nd column) with DRAGON fits with no resonances (3rd column) and with resonances (4th column). Applied cuts: $0.3 < p_1 < 3$ GeV, $0.5 < p_1 < 1$ GeV, $0.2 < p_1 < 1.5$ GeV for $p_1\pi$,K respectively.

	ALICE			no resonances			with resonances			
centrality	T	$\langle v_t \rangle$	\boldsymbol{n}	T	$\langle v_t \rangle$	\boldsymbol{n}	T	$\langle v_t \rangle$	\boldsymbol{n}	
	[MeV]			[MeV]			[MeV]			
0-5%	95	0.651	0.71	98	0.645	0.73	82	0.662	0.69	
5-10%	97	0.646	0.72	98	0.645	0.73	94	0.654	0.69	
10 - 20%	99	0.639	0.74	102	0.637	0.73	90	0.649	0.71	
20-30%	101	0.625	0.78	102	0.624	0.79	98	0.633	0.75	
30 - 40%	106	0.604	0.84	110	0.605	0.81	102	0.616	0.79	
40 - 50%	112	0.574	0.94	110	0.572	0.97	118	0.581	0.89	
50-60%	118	0.535	1.10	122	0.527	1.15	126	0.541	1.03	
60-70%	129	0.489	1.29	126	0.484	1.39	146	0.489	1.23	
70 - 80%	139	0.438	1.58	142	0.439	1.51	170	0.423	1.55	

3. DRAGON: resonances/direct for π , K, p

Pions from resonance decays peak over direct pions at both low p_1 and high p_1 for 0 - 5%

Spectra anatomy of pions at various centralities:

central: low temperature and strong flow: kicks to pions from ρ decays

peripheral: higher temperature and more thermal momentum to pions

Blue ellipses estimate 68% C.L.

5. Fits of pt spectra: π^+ , K⁺, p, K⁰, Λ , Ξ

Spectra for various centralities are shown along with $R_i = N_i^{exp}/N_i^{MC}$ ratios. All spectra including those for Ω , K^{*} and Φ can be found in [6].

References

Conclusion:

[1] B. Abelev et al. (ALICE collab.), Phys. Rev. C 88 (2013) 044910

[2] B. Abelev et al. [ALICE collaboration], Phys. Rev. Lett. 111, 222301 (2014)

[3] B. Abelev et al. [ALICE collaboration], Phys. Lett. B728, 216 (2014)

[4] B. Abelev et al. [ALICE Collaboration], arXiv:1404.0495 [nucl-ex]

[5] B. Tomášik, Comp. Phys. Commun. 180 (2009) 1652

[6] I. Melo, B. Tomasik, arXiv:1502.01247v1 [nucl-th]

- Resonances induce downward shifts \leq 10 MeV in T_{kin} for central collisions and upward shifts \leq 25 MeV for peripheral collisions
- Multistrange baryons show freeze-out at higher temperature and weaker transverse flow.
- Chemical potentials inclusion currently under way (to lift assumption that resonances with abundances fixed at T_{ch} decay only after kinetic freeze-out)