SUSY searches with light leptons, photons and taus

Cristina Botta (CERN)
on behalf of the ATLAS and CMS
collaborations

EPS-HEP 2015 Conference. 22-29 July, Vienna, Austria

Outline

- How and why ATLAS and CMS have used reconstructed electrons, muons, taus and photons to search for SUSY with Runl LHC data
 - Results refer to 8 TeV data, ~20 fb⁻¹
 - Most of the time the results are presented in the context of the simplified models:
 - only the targeted production and decay schemes are examined, with all non-participating BSM particles assumed to be too heavy to be relevant

Why light leptons?

- Leptonic SUSY searches vs Hadronic SUSY searches
 - less signal acceptance due to lower branching fractions
 - less SM background
 - may lead to a more precise reconstruction of the final state
 - most sensitive in compressed scenarios
 - lower trigger thresholds
 - final state with low missing energy, too SM like for hadronic searches
 - most sensitive when searching for EWKinos production (many leptons due to the decay via sleptons/W/Z/H)
- Experimental Signatures (focusing on ≥ 2 leptons)
 - 2 same-sign leptons, e or μ (SS di-leptons) + jets + E_T^{miss}
 - 2 opposite-sign same-flavour e or μ (OSSF di-leptons) + jets + E_T^{miss}
 - >= 3 leptons, e or μ (multi-leptons) + jets + E_T^{miss}

SS di-leptons: motivations

Strong Production (some SMS in R-parity-conserving scenario)

Decreasing leptons p_T , jets p_T , E_T^{miss} with decreasing $\Delta m(sparticle-\tilde{X}_1^0)$

- Gluino is its own antiparticle, same probability to decay in a final state with either a +charged or -charged lepton
- Prompt and isolated ss di-lepton events are produced only through very rare SM processes: tt+W, tt+Z, tt+H, same-sign WW production

For EWK Production: see dedicated talk

SS di-leptons: analysis strategy

from CMS. arXiv:1311.6736

- Require the two ss leptons (e/ μ) down to $p_T > 10$ GeV ($|\eta| < 2.5/2.4$) in order to extend the sensitivity in the compressed scenarios with off-shell W
- Require the leptons to pass tight IP and Isolation criteria to reject tt and W events with 2nd same-sign lepton from B decay or hadron mis-identification
- Cut&count events in grid of signal region based on N_{jets}, N_{b-jets}, H_T (scalar sum of jets p_T), E_T^{miss}
 - jets p_T > 40 GeV, |η| < 2.4
- Backgrounds from events with non-prompt leptons (data-driven), from rare SM processes (simulation), events with charge mis-identified leptons (data driven)

$N_{ m b-jets}$	$E_{\rm T}^{\rm miss}~({\rm GeV})$	$N_{ m jets}$	$H_{\rm T} \in [200, 400] \; ({\rm GeV})$	$H_{\rm T} > 400 \; ({\rm GeV})$
= 0	50-120	2-3	SR01	SR02
		≥ 4	SR03	SR04
	> 120	2-3	SR05	SR06
		≥ 4	SR07	SR08
= 1	50-120	2-3	SR11	SR12
		≥ 4	SR13	SR14
	> 120	2-3	SR15	SR16
		≥ 4	SR17	SR18
≥ 2	50-120	2-3	SR21	SR22
		≥ 4	SR23	SR24
	> 120	2-3	SR25	SR26
		≥ 4	SR27	SR28

≥ 3 leptons + bjets from CMS. PAS-SUS-13-008

- All of the previous models with b-jets in the final state also allow more than 2 light leptons, with or without an on-Z l⁺l⁻ combination
- Objects: isolated and prompt e/ μ p_T >10 GeV | η | < 2.4/2.5, jets p_T > 30 GeV | η | < 2.4
 - if a pair of OSSF leptons has 50<m(I⁺I⁻)<100 GeV: onZ event. If not: offZ event
- Cut&count events in grid of signal region based on N_{jets}, N_{b-jets}, H_T, E_T^{miss}

Variable	Baseline	Search Regions			
Sign/Flavor	3 e/µ	On-Z		Off-Z	
N _{b-jets}	≥1	1	2		≥ 3
N _{jets}	≥ 2	2–3	·	≥ 4	
H _T (GeV)	≥ 60	60–200		≥ 200	
E _T ^{miss} (GeV)	≥ 50	50–100	100)–200	≥ 200

Extended acceptance in more compressed region due to lower thresholds (trigger and offline selection)

OS di-leptons: motivations

- SUSY decay chains can lead to opposite sign same flavor leptons in the final state
 - decays involving an on-shell Z boson will produce an excess on the Z peak invariant mass: Z + E_T^{miss} + jets search
 - off-shell Z boson or slepton decays will lead to a characteristic "edge" shape in the m(I⁺I⁻) spectrum: "edge" search

Strong Production (some SMS in R-parity-conserving scenario)

• OS di-lepton signature also used for exclusive stop searches in difficult regions (m_{stop} - mX_1^0) $\sim m_{top}$ with Z/H in the cascade, and (m_{stop} - mX_1^0) $< m_W$ with soft leptons, motivated by Naturalness arguments: see dedicated talks on 3rd generation, and compressed spectra

OS di-leptons "edge" analysis strategy from CMS. arXiv:1502.06031

- Selection: $e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$ with m(l⁺l⁻)> 20 GeV, isolated leptons p_T >20 GeV ($N_{jets} \ge 2$ and $E_T^{miss} > 150$) or ($N_{jets} \ge 3$ and $E_T^{miss} > 100$), jets p_T > 40 GeV
- Strategy:
 - A. Symultaneously fitting the signal and bkg hypotheses (DY, same-flavour symmetric bkg like tt) to data in the 20 < m(I⁺I⁻) < 300 GeV range
 - B. Direct comparison of event counts in regions: 20 < m(l⁺l⁻) < 70 GeV, 81 < m(l⁺l⁻) < 101 GeV, 20 < m(l⁺l⁻) < 70 GeV. Background yields from control regions.

Excess (2.6 σ) in low-mass region, interpreted as a potential signal excess with an edge located at 78.7±1.4 GeV (2.4 σ) by the fit.

In the off-Z search of the other experiment there's no excess. Similar kinematic requirements.

Approach B used to set upper limits

OS di-leptons on-Z: analysis strategy from ATLAS, arXiv:1503.03290

- Selection: e[±]e[∓] or μ[±]μ[∓] with 81< m(l⁺l⁻) < 101 GeV, isolated leptons p_T > 25,14-10 GeV
 N_{jets} ≥ 2, (jets p_T > 35 GeV), H_T (scalar sum of jets and leptons p_T) > 600 GeV,
 E_T^{miss} > 225 GeV, Δφ(j_{1,2},E_T^{miss}) < 0.4
- Strategy: Direct comparison of event counts. Background predictions from control regions (same-flavour symmetric bkgs, WW, ZZ)

Excess of events (30) mainly driven by the electron channel

In the on-Z search of the other experiment there's no excess. But very different kinematic requirements.

Leptonic searches interpretation

- Given the lack of significant excesses wrt the expected SM backgrounds, the results
 of the searches are used to derive limits on the parameters of various SMs
 - few examples of these interpretations from CMS

SS di-leptons and Trilepton

Leptonic searches interpretation (2)

- Given the lack of significant excess wrt the expected SM backgrounds, the results of the searches are used to derive limits on the parameters of various SMs
 - few examples of these interpretations from CMS

- Motivated in generalized models of gauge mediated SB (GGM)
 - the decay of SUSY spartners proceed through the NLSP→ G(LSP) + SM particle, with high probability being a x
 - NLSP usually admixture of any of the SUSY partners of the EWK gauge and Higgs boson states. Three scenarios:
 - NLSP purely bino-like: **NLSP** \rightarrow **G** + χ
 - NLSP admixture of bino and higgsino: significant contribution from

 $NLSP \rightarrow G + h(\rightarrow bb)$ or $NLSP \rightarrow G + Z(\rightarrow ij)$

NLSP degenerate triplet of wino-cases: significant contribution from

NLSP (charged components) \rightarrow G + W(\rightarrow Iv)

- 2 high energetic, isolated photons + jets + E_T^{miss}
- 1 high energetic isolated photon + 1 b-jet + jets + E_T^{miss}
- 1 high energetic isolated photon + 1 isolated lepton (e, μ) + jets + E_T^{miss}
- 1 high energetic isolated photon + multiple jets + E_Tmiss

SUSY searches with photons

from ATLAS. arXiv:1507.05493

- Objects: γ with $p_T > 75/125$, $e/\mu p_T > 20$, jets $p_T > 20$, leading jets $p_T > 75/140$ GeV
- Cut&count events in grid of signal region based on:
 - N_{jets}, N_{b-jets}, N_{leptons}, Δφ(γ,E_T^{miss}), Δφ(jet,E_T^{miss}), Δφ(jet, γ),
 H_T (scalar sum of p_T of selected photons, leptons and jets), H_T^{jets}, m_{eff} = H_T² + E_T^{miss},
 R_T⁴ (scalar sum of p_T of 4 highest-p_T jets divided by H_T^{jets})

DiPhoton analysis targeting the gluino-bino model

Signal Region	$SR_{S-L}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$
No. photons ($E_{\rm T}$ GeV)	> 1 (> 75)	> 1 (> 75)
$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	> 150	> 250
$H_{\rm T}(m_{ m eff})~({ m GeV})$	(> 1800)	(> 1500)
$\Delta \phi_{\min}(\text{jet}, E_{\text{T}}^{\text{miss}})$ (No. leading jets)	> 0.5 (2)	> 0.5 (2)
$\Delta\phi_{\min}(\gamma, E_{\mathrm{T}}^{\mathrm{miss}})$	_	> 0.5

low and high NLSP masses

Photon + b targeting higgsino-bino model μ < 0, low and high NLSP masses

Signal Region	$\mathrm{SR}^{\gamma\mathrm{b}}_{\mathrm{L}}$	$\mathrm{SR}^{\gamma\mathrm{b}}_{\mathrm{H}}$	$\mathrm{SR}_\mathrm{L}^{\gamma_\mathrm{J}}$	$SR_{H}^{\gamma_J}$
No. photons ($E_{\rm T}$ GeV)	> 0 (> 125)	> 0 (> 150)	1 (> 125)	1 (> 300)
$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	> 100	> 200	> 200	> 300
$H_{\rm T}$ (GeV)	_	> 1000	_	> 800
No. jets (No. <i>b</i> -jets)	2 - 4 (> 1)	> 3 (> 0)	> 3 ^a	> 1 ^a
No. leptons	0	_	0	0
M_{bb} (GeV)	75 - 150	_	_	_
$M_{\rm\scriptscriptstyle T}^{\gamma,E_{\rm\scriptscriptstyle T}^{ m miss}}$ (GeV)	> 90	> 90	_	_
$\Delta \phi_{\min}^{1}(\text{jet}, E_{\text{T}}^{\text{miss}})$ (No. leading jets)	> 0.3 (2)	> 0.3 (4)	> 0.4 (2)	> 0.4 (2)
R_{T}^{4}	_	_	< 0.85	
$\Delta \phi_{\min}(\text{jet}, \gamma)$	-	_	_	< 2.0

Photon + j targeting higgsino-bino model $\mu > 0$, low and high NLSP masses

SUSY searches with photons (3)

Given that no significative excess with respect to SM prediction is found in any of the 6 SR described, results are interpreted in terms of limits on the parameters of the considered models

signal regions for wino-NLSP, and wino-bino models are also defined and used in the paper to extract relative limits

bino-like NLSP, gluino production

similar searches from CMS in arXiv:1507.02898

Taus

- Naturalness arguments suggest that the lightest third-generation sparticles should have masses of a few hundred GeV
- Light sleptons could play a role in the co-annihilation of neutralinos in the early universe
 - models with light tau sleptons are consistent with dark matter searches)
- Searches of strong SUSY production with at least one hadronic tau + jets +
 E_Tmiss performed by ATLAS are particularly sensitive to GMSB models where
 the next-to-lightest SUSY particle is the stau and final states contain between
 two and four tau leptons

from ATLAS. arXiv:1407.0603

- Channels: 1τ_h + 0 light leptons, ≥ 2τ_h + 0 light leptons, ≥1τ_h + 1e, ≥1τ_h + 1μ
- In a nGM model, a limit on the gluino mass of 1090 GeV independent on the stau mass, provided it is the NLSP, is obtained

Conclusions

- During LHC Runl ATLAS and CMS have searched for SUSY exploiting final states with light leptons, photons and taus
 - why and how was discussed, focusing on searches for strong
 SUSY production (R-parity conserving)
 - results from all searches have been used to extract limits on the parameters of several simplified models
- ATLAS and CMS are now commissioning electrons, muons, photons and taus identification with the first 13 TeV data, to be ready to use them to continue the hunt.

Backup