Highlights from EPS HEP 2015

Dieter Zeppenfeld Karlsruhe Institute of Technology

Excellent conference with many beautiful results presented in talks and posters

- 41 plenary talks
- 425 talks in 36 parallel session
- 194 posters

Selection of some highlights cannot do justice to all the great physics discussed during the past week

Outline

- The Higgs and its friends
- Resonance searches
- First results from run 2 of the LHC
- The ridge
- NLO and the NNLO revolution
- Cosmology
- Heavy flavors
- ... and more

Higgs Production at the LHC

ttH

Η

Reele

	process	8 TeV	13 TeV
ggF	gluon-gluon fusion	19 pb	44 pb
VBF	vector-boson fusion	1.6 pb	3.7 pb
VH	associated production	1.1 pb	2.2 pb
ttH	associated production	0.13 pb	0.51 pb
tH	Associated production	~20 fb	~90 fb

SM Production Modes $(M_{H} = 125 \text{ GeV})$

HIGGS MASS

The SM does not predict the Higgs boson mass: we need to measure it

Signal strength (µ) Given a mass, we can make predictions* for the production cross section and decay rates

Higgs mass measurements (GeV):

ATLAS:	125.36	± 0.37 (stat)	±0.18 (syst)
CMS:	125.02	±0.27 (stat)	±0.15 (syst)

Precision measurement: <0.2%

*a lot of progress by theory community, LHCXSWG. Improvements continue...

SIGNAL STRENGTH FOR DECAY MODES

STATUS OF SM RARE DECAYS

Searches for rare decays performed in various channels

Observation of these decays in Run 1 would signal BSM physics

Non-universal coupling of Higgs to leptons:

• $\mu\mu$ signal would be 280 times larger than SM if μ coupling was equal to that of τ

Process	limit (times SM)
μμ (ATLAS)	7.0
μμ (CMS)	7.4
Zγ (ATLAS)	11
Zγ (CMS)	9
γγ * (CMS)	7.7
J/ψγ (ATLAS)	540
J/ψγ (CMS)	540
ee(CMS)	10 ⁵

Pierre Savard

Search for heavy, narrow resonances

Many channels

- Dijets
- Photon pairs
- Lepton Pairs
- Pairs of heavy bosons

Mikulec

Di-jets

- Classical bump search narrow resonance: up to widths 20-30% of the mass
- Simple Data-driven, background parameterized by smooth function
- **Powerful** generic search, many interpretations, high mass reach

Excluded resonances with masses of 2 – 5, TeV depending on model

Di-photons

- Sensitive to spin 2 (RS graviton) or spin 0 (heavy Higgs) resonances
- Clean topology with well understood SM γγ background (Higgs searches)
- Challenge is the photon reconstruction and ID at high energies

Limits on RS graviton mass 1- 2.7 TeV (sensitivity similar to di-lepton)

Mikulec

Mikulec

anti-quark

Boosted

topology

quark

Boson jets

m

Di-bosons

- Search for resonance decaying to pairs of W, Z, H
- Challenging topology:
 - At resonance masses above 1 TeV the decay products of bosons overlap due to strong boost
- Needs dedicated techniques to reconstruct objects
 - Specific lepton isolation
 - Grooming techniques (cleaning pileup and noise)

VV->qqqq

CMS: arxiv:1405.1994

- ATLAS: Trigger on a jet with pt>360 GeV CMS: Trigger on HT
- Only boosted region considered (low mass QCD) dominated)
- Select events with Mj within the W/Z mass window
 - ATLAS: |y₁-y₂|< 1.2, Pt Asymmetry <0.15 to reject events where one of the jets is poorly measured
 - 3 overlapping signal regions/non statistically independent
- Additional cuts to reduce QCD (ntrk, nsubjettiness...)
- · The background is estimated by fitting the data

Events /100 GeV

10⁰

10²

10

Significance

10

CMS, L = 19.7 fb¹, vs = 8 TeV

A High-purity doubly W/Z-tagged data

m, [TeV]

Mikulec

Di-bosons – excess?

- Moderate excesses observed in some channels around 1.8 2 TeV
 - Global significance $2 2.5 \sigma$
 - Small excesses also in di-jets...
- Excesses of 2σ not unusual, but ATLAS + CMS at similar place = excitement

LHC has started run 2 and is delivering

Luminosities @ CMS

- Total delivered: 106/pb
- Total recorded: 83.5/pb
- Total recorded @ 3.8T: 61.8/pb
- **Results** (a) **EPS** presented up to

Borras

• 13 TeV: 37 pb-1, Mjj \leq 5 TeV, 8 TeV:19.7 fb-1, Mjj \leq 5.15 TeV

Close to Run 1 limit → interesting times ahead of us ☺

Hoecker

13 TeV / 8 TeV inclusive pp cross-section ratio

Reach very high mass ttbar pairs

Top-antitop production at 13 TeV

Extraction of top-pair cross section

[ATLAS-CONF-2015-033]

 σ_{tt} (13 TeV) = 825 ± 49 (stat) ± 60 (syst) ± 83 (lumi) pb

Hoecker

Properties of inelastic pp collisions at 13 TeV

Key input to pileup and underlying event modelling, uses low-µ data

[ATLAS-CONF-2015-028]

Average charged-particle multiplicity per unit of rapidity for $\eta = 0$ vs CM energy

For comparison, the strange baryon contribution is included at 13 TeV (1.5% correction factor)

Hoecker

Two-charged-particle correlations

In high-multiplicity pp collisions using low-µ data

Hoecker (see also Bielcikova talk)

[ATLAS-CONF-2015-027]

Near-side ($\Delta \phi \sim 0$) "ridge" shape in $\Delta \eta$ - $\Delta \phi$ seen in pp, pPb and PbPb collisions

Unexpected effect of collective dynamics. Increases with particle multiplicity and moderate p_T

hard scattering contributions]

Two-charged-particle correlations in 13 TeV

In high-multiplicity pp collisions using low-µ data

[ATLAS-CONF-2015-027]

Hoecker

How does the pp ridge evolve with CM energy ?

- Trigger on MBTS (97M events) & high charged multiplicity (9.5M)
- Exploit work on tracking systematics from minimum bias analysis
- Unfold to particle level
- Extract two-particle correlation function $C(\Delta \eta, \Delta \phi) = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)}$
- Background from mixed data events

22

Higher order calculations [Grazzini] The NLO automation

• Unitarity and on-shell methods

Numerical off-shell methods

Specify process (input card),

define cuts/distributions

Combine efficiency of the numerically stable tensor-integral reduction with the automation made possible by a completely recursive approach

OpenLoops+Sherpa Recola see also Van Hameren (2009) The final goal is really automatic NLO calculations

run and get the results

The problem is "in principle" solved

The NNLO revolution

Grazzini

24

NNLO calculations important for:

It is essential to provide fiducial cross sections and distributions with which the data can be directly compared (for more processes see also Les Houches 2013 NNLO wish list)

Comparison to measured WW cross section

Signature e^+e^- , $\mu^+\mu^-$, or $e^\pm\mu^\mp + 0.1$ jets + MET \sim

Previous Measurements CMS-PAS-SMP-12-013

• 8 TeV, 3.5 fb⁻¹, found $\sigma(WW \rightarrow 2\ell 2\nu) = (22\pm13)\%$ higher than NLO prediction

Dudero

 \sim

Reanalysis of WW cross section by CMS

Signature e^+e^- , $\mu^+\mu^-$, or $e^\pm\mu^\mp + 0.1$ jets + MET

Previous Measurements CMS-PAS-SMP-12-013

• 8 TeV, 3.5 fb⁻¹, found $\sigma(WW \rightarrow 2\ell 2\nu) = (22\pm13)\%$ higher than NLO prediction

Cosmology, dark matter and cosmic rays

- Many nice talks in parallel sessions
- Great reviews on Tuesday morning Volansky, Monroe, Hoffmann, Halzen, Ganga, Lahav, Binetruy

Dark Energy Survey (DES) (talk by Ofer Lahav)

Goal: weak lensing effects on 300 million galaxies provide dark matter map

DM distribution (center) tracks luminous matter distribution of galaxies (left)

Improved low mass WIMP bounds by CRESST

New anomaly in ε'/ε : direct CPV in $K_L \rightarrow \pi\pi$

Highly BSM-sensitive observable, precisely measured

 $(\varepsilon'/\varepsilon)_{\rm exp} = (16.6 \pm 2.3) \times 10^{-4}$ world average (KTeV & NA48)

Major driver of flavour theory in 1990's

Buras-Buchalla-Lautenbacher; Buras-Jamin-Lautenbacher-Weisz; Bosch-Buras-Gorbahn-Jaeger-Jamin-Lautenbacher-Silvestrini; Bertolini et al; Ciuchini et al; Pallante-Pich; Cirigliano et al; ...

situation murky due to uncertain hadronic matrix elements (nonperturbative)

 @ EPS 2015: first complete lattice calculation (tour de force; evaluation of 20 hadronic matrix elements in isospin limit)

 $(\varepsilon'/\varepsilon)_{\mathrm{SM}} = (1.4 \pm 7.0) \times 10^{-4}$

RBC-UKQCD collaboration [Z Bai et al]; talk A Soni at this conference

 @ EPS 2015: impose Delta I=1/2 to reduce number of independent hadronic matrix elements; isospin and NNLO corrections; corroborate lattice with new large-N relations (and vice versa)

 $\varepsilon'/\varepsilon = (2.2 \pm 3.7) \times 10^{-4}$

 $3.3\,\sigma$ from expt

Buras, Gorbahn, Jaeger, Jamin; Buras and Gerard; talk A Buras at this conference

Excellent prospects as BSM probe if theory errors are confirmed/further reduced

Big improvements on hadronic matrix elements for B-physics, talk R. van de Water

<u>Observation of $J/\psi p$ resonances consistent with</u> pentaquark states in $\Lambda_b^0 \rightarrow J/\psi K^- p$ decays

[arXiv:1507.03414]

Karim Trabelsi

^s}K⁻

...and another real highlight of the conference

Copyrights: Weinwurm/ÖAW

A big thank you to the organizers for making this a great conference!