

Neutrons test Gravity, Dark Matter and Dark Energy Snapshots of a Quantum Bouncing Ball & Gravity Resonance Spectroscopy

EPS-HEP 23.07.2015 Gunther Cronenberg

Neutrons & new forces

energy

distance

Neutrons & Gravity

Combine unique system with well-performed method to ensure high precision

The neutron

no charge low polarizability magnetic moment nEDM

$$(11.6 \pm 1.5) \cdot 10^{-4} \text{fm}^3 \propto 10^{-19} \alpha_{\text{atom}}$$

 $|d_n| < 2.9 \times 10^{-26} e \text{cm}$

The method

Resonance Spectroscopy:

The system

Ultra-cold neutron above a mirror

- no electromagnetic interaction
- low energy
- Energy resolution:

```
E = h\nu
```

 $\Delta E = 10^{-21} \text{eV}$

UCNs in the gravity field

V.I. Luschikov and A.I. Frank, JETP Lett. 28 559 (1978) V. Nesvizhevsky et al., Nature, 415 297 (2002)

UCNs in the gravity field

high sensitivity to modification of potential

V.I. Luschikov and A.I. Frank, JETP Lett. 28 559 (1978) V. Nesvizhevsky et al., Nature, 415 297 (2002)

UCNs in the gravity field

• Schrödinger eq. with linearized gravity potential

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + mgz\right)\varphi_n(z) = E_n\varphi_n(z) \qquad \text{bc:} \quad \varphi_n(0) = 0$$
$$\varphi_n(z) = a_n Ai\left(\frac{z}{z_0} - \frac{E_n}{E_0}\right)$$

- bound, discrete states
- Non-equidistant energy levels

state	energy
1	1.41 peV
2	2.46 peV
3	3.32 peV

$$E_0 = \sqrt[3]{\frac{\hbar^2 m g^2}{2}} = 0.6 \text{peV}$$
$$z_0 = \sqrt[3]{\frac{\hbar^2}{2m^2 g}} = 5.9 \mu \text{m}$$
$$t_0 = \sqrt[3]{\frac{2\hbar}{mg^2}} = 1.1 \text{ms}$$

Quantum Bouncer

qBounce

measurements at different positions explicit quantum behaviour 51mm behind 20µm step

Rabis method

Gravity Resonance Spectroscopy

Height [µm]

Dark universe

Peter Geltenbort

Hanno Filter

Martin Thalhammer

G. C.

Hartmut Abele

Tobias Jenke