First observation of $K \rightarrow \pi^+\pi^0 e^+e^-$ decay at NA48

R. Fantechi

CERN and INFN - Sezione di Pisa on behalf of the NA48/2 Collaboration

The NA48/2 Collaboration Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Florence, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Turin, Vienna

> EPS-HEP 2015 Wien, July 24th, 2015

- The NA48/2 beam and detector
- The measurement of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$
- Prospects and conclusions

NA48: site and history

The NA48/2 Beam

NA48/2 beam (2003-2004): simultaneous K⁺/K⁻

 $N(K^{+})/N(K^{-}) = 1.8$

Beam size: $4x4 \text{ mm}^2$, $10x10 \mu r$

The NA48/2 Detector

LKr Calorimeter: $\sigma(E)/E \cong 3.2\%/JE \oplus 9\%/E \oplus 0.42\%$

 $σ(x) = σ(y) \cong (4.2/JE ⊕ 0.6)mm \cong$ 1.5mm@ 10 GeV

Spectrometer:

 $\sigma(\mathsf{P})/\mathsf{P}\cong 1.02\%\oplus 0.044~\mathsf{P}[\text{GeV/c}]\%$

Scintillator hodoscope: fast trigger and good time resolution (150 ps)

Efficient trigger chain for 3-track vertices using the hodoscope multiplicity at L1 and drift chamber track reconstruction at L2

$K^{\pm} \longrightarrow \pi^{\pm} \pi^{0} \gamma^{*} \longrightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$ motivations

Never observed
Inner bremsstrahlung, direct emission (E,M) and interference components

$$\frac{d^3 \Gamma}{dE_{\gamma}^* dT_c^* dq^2} = \frac{d^3 \Gamma_B}{dE_{\gamma}^* dT_c^* dq^2} + \frac{d^3 \Gamma_E}{dE_{\gamma}^* dT_c^* dq^2} + \frac{d^3 \Gamma_{\text{int}}}{dE_{\gamma}^* dT_c^* dq^2} + \frac{d^3 \Gamma_{\text{int}}}{dE_{\gamma}^* dT_c^* dq^2},$$

$$\gamma^*(q)$$
 $\gamma^*(q)$
 $\gamma^*(q)$
 $\gamma^*(q)$
 $\gamma^*(q)$
 $\gamma^*(q)$
 $e^{-}(k_{-})$

 $\pi^{+}(p_{1})$

•Interference $\Gamma_{\rm B}$ $\Gamma_{\rm E}$ can confirm the discrepancy in sign with the theoretical prediction observed by NA48/2 in K[±] $\rightarrow \pi^{\pm}\pi^{0}\gamma_{\rm EPJC 68 (2010) 75-87}$

•Magnetic interference is genuine $\pi\pi$ ee and can be used to extract the sign of the magnetic term Γ_M (impossible to extract in $\pi^{\pm}\pi^{0}\gamma$).

•P violating observables in the dilepton pair coupling can be used to access short distance physics using K⁺ only (NA62)

•Charge asymmetry not contaminated by indirect CP violation (as in K⁰)

Data analysis

- Data collected in 2003 have been used
- Montecarlo simulation at tree level
 - Following the paper from L. Cappiello et al.
 - Inner bremsstrahlung, direct emission (dominant M contribution) and BE interference
 - Radiative correction implemented with Coulomb corrections and Photos package
- Selection cuts
 - 3 reconstructed tracks coming from one decay vertex
 - Electron/pion separation using E/P
 - 2 reconstructed γ clusters giving the π^0 mass
 - $P_e > 2GeV/c$
 - $P_{\pi\pi ee}$ within 56 and 64 GeV/c
 - 483.677 GeV/c² < $M_{\pi\pi ee}$ < 503.677 GeV/c²

Main sources of background

• $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}_{D} (K_{3\pi D})$

- $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}\gamma$ with one photon undetected or merged with one electron cluster
- Require $|M_{\pi\pi}|^2 > 0.12 \text{ GeV}^2/c^4$
 - Missing e⁺e⁻ system can be light
- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}{}_{D} (\gamma) (K_{2\pi D})$
 - $K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$ with an additional photon (radiative or accidental)
 - No combination $e^+e^-\gamma$ should have $|M_{ee\gamma} M_{\pi 0}| < 7 \text{ MeV/c}^2$

Background subtraction

K⁺→π⁺π⁰

0.12

 $M_{e^+e^-}$ (GeV/c²)

0.14

Normalization

- For normalization use the decay $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}{}_{D}(\gamma)$, collected with the same trigger
- Very large sample with known BR (PDG)

# of events	6714917 <u>+</u> 2591	0.04%
Statistical error		0.04%
Acceptance	(3.555±0.002)%	0.002%
Trigger efficiency	(97.64± 0.04)%	0.04%
Bkgd in $2\pi_D$ sample	3365±58	8 · 10 ⁻⁴ %
Radiative corrections	0.78%	0.78%
Systematic error		0.78
BR(π ⁺ π ⁰ _D (γ))	(2.425±0.073)×10 ⁻³	3.01%
External error		3.01%

Error summary table

Error type	۵ (BR)	∆(BR)/BR
1916 signal candidates		
Statistical origin	0.095	2.35%
Radiative correction on IB	0.020	0.50%
Signal total acceptance	0.014	0.34%(stat)
	0.041	1.00% (model dependence)
Background subtraction	0.016	0.40% (stat)
	0.002	0.05% (syst. Radcorr $2\pi_D$)
Trigger efficiency	0.026	0.65% (stat)
Total systematics	0.056	1.40%
Normalization measurement	(2.425±0.073)×10 ⁻³	3.01% (from $\pi^{+}\pi^{0}{}_{D}$ decay BR)
External error	0.126	3.01%

Main contributions:

-Model dependent acceptance for the systematic error

-Error on the $\pi^+\pi^0_D$ decay branching ratio for the external error

Branching ratio measurement

- The available statistics is not sensitive to DE and INT
- We have computed a model dependent branching ratio using a total acceptance in which the weights of the various components have been taken from Cappiello et al.

$$Acc_{\pi\piee}^{Tot} = \frac{Acc(IB) + Frac(DE)_{Th} \cdot Acc(DE) + Frac(INT)_{Th} \cdot Acc(INT)_{Th}}{1 + Frac(DE)_{Th} + Frac(INT)_{Th}}$$

Frac(DE)=1/71 and Frac(INT)=1/128 computed in Cappiello et al. using inputs from the NA48 measurement of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$

• The branching ratio is computed as

$$BR(\pi\pi ee) = \frac{N_{\pi\pi ee} - N_{BG}}{K_{Flux} \cdot Acc_{\pi\pi ee}^{TOT} \cdot \varepsilon_{\pi\pi ee}}$$

$$BR(\pi\pi ee) = (4.06 \pm 0.10_{stat} \pm 0.06_{sys} \pm 0.13_{ext}) \cdot 10^{-6}$$

Preliminary

Quantity	Value
Ν _{ππεε}	1916
	1860 ± 51 after BG sub
N _{BG}	55.8±7.4
K _{flux}	(7.97±0.25 _{tot})×10 ¹⁰
Acceptance (Acc ^{TOT} $_{\pi\pi ee}$)	(0.583±0.0019)%
Trigger efficiency ($\epsilon_{\pi\pi ee}$)	(98.7±0.65)%

Comparison with theory

Theoretical predictions considering isospin breaking effects ($m_{\pi^+} \neq m_{\pi^0}$), unpublished, BR = 4.19 \cdot 10⁻⁶

 $BR_{\pi\pi ee}^{NA48/2} = (4.06 \pm 0.17) \cdot 10^{-6}$

Compatible with theoretical prediction without radiative corrections

Radiative corrections included in the NA48/2 simulation using PHOTOS

Prospects and conclusions

- NA48/2 has observed for the first time the decay $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{\pm}e^{\pm}$ with ~3% background contribution
- A model dependent branching ratio has been measured
 - $BR_{\pi\pi ee}^{NA48/2} = (4.06 \pm 0.17) \cdot 10^{-6}$
- Currently analysing 2003 + 2004 data
 - Improved statistics
 - Limit on charge asymmetry
- NA62 could improve the result
 - Almost hermetic photon veto detector $\rightarrow K_{3\pi D}$ background strongly reduced
 - At least 20x statistics, possibility to look at Dalitz plot features
 - Disentangle DE and INT components