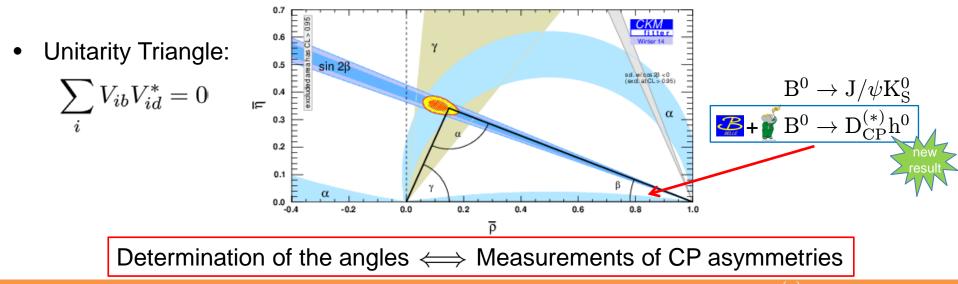
Observation of CP Violation in B⁰→D_{CP}^(*)h⁰ Decays in a Combined Analysis using *B*_AB_AR and Belle Data

Markus Röhrken California Institute of Technology

On behalf of the BABAR and Belle Collaborations

23th of July 2015

CKM Quark Mixing Matrix and the Unitarity Triangle


• Yukawa couplings of fermion fields to Higgs condensate \Rightarrow quark masses and mixing

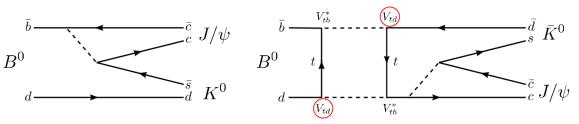
$$\mathcal{L}_Y = -Y_{ij}^d \bar{Q}_{Li}^I \phi d_{Rj}^I - Y_{ij}^u \bar{Q}_{Li}^I \epsilon \phi^* u_{Rj}^I + h.c.$$

• In mass basis, quarks couple in charged-current W[±] interactions as

$$-\frac{g}{\sqrt{2}}\left(\bar{u}_{L},\bar{c}_{L},\bar{t}_{L}\right)\gamma^{\mu}W_{\mu}^{\pm}\underbrace{\left(\begin{array}{ccc}V_{ud}&V_{us}&V_{ub}\\V_{cd}&V_{cs}&V_{cb}\\V_{td}&V_{ts}&V_{tb}\end{array}\right)}_{V_{CKM}}\left(\begin{array}{c}d_{L}\\s_{L}\\b_{L}\end{array}\right)+h.c.$$

 Kobayashi-Maskawa theory: cannot align simultaneously up- and down-type quarks 10 free parameters: 6 quark masses + 3 mixing angles + 1 complex CPV phase

07/23/2015

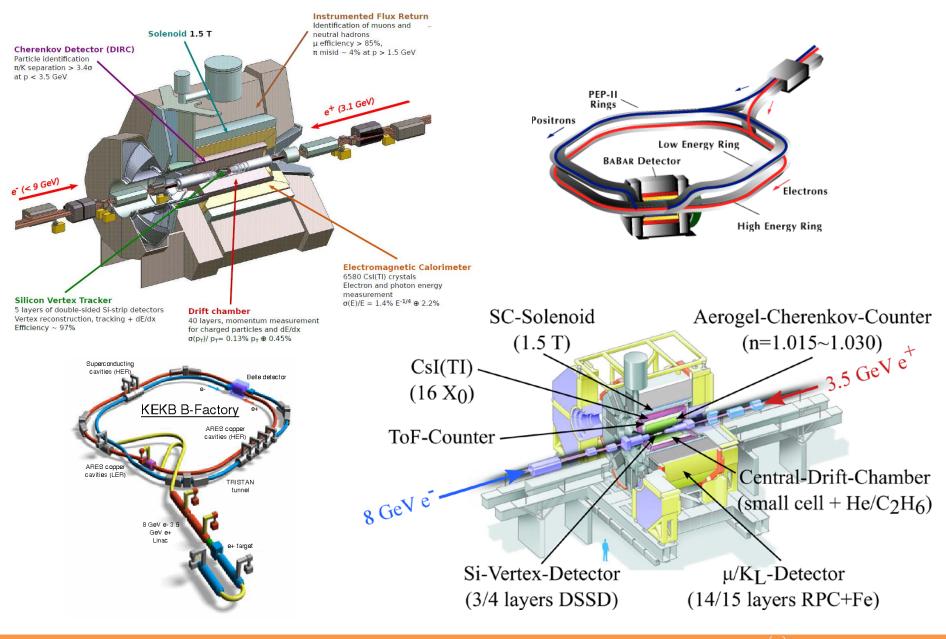

Markus Röhrken Combined BaBar+Belle Analysis of $\mathbf{B}^{0} \rightarrow \mathbf{D}_{CP}^{(*)}\mathbf{h}^{0}$

Measurements of the Weak Phase β • Interference between mixing and decay in neutral B
meson decays to a CP eigenstate• Interference characterized by: $\lambda = \frac{q}{p}\frac{\bar{A}}{A}$ • phase factor due to mixing

• Time-dependent CP asymmetry:

$$A_{\rm CP}(t) = \frac{\Gamma\left(\bar{B}^{0}(t) \to f_{\rm CP}\right) - \Gamma\left(B^{0}(t) \to f_{\rm CP}\right)}{\Gamma\left(\bar{B}^{0}(t) \to f_{\rm CP}\right) + \Gamma\left(B^{0}(t) \to f_{\rm CP}\right)} = \underbrace{\mathcal{S}}_{\mathbf{N}} \sin\left(\Delta mt\right) - \underbrace{\mathcal{C}}_{\mathbf{N}} \cos\left(\Delta mt\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \sin\left(\Delta mt\right) - \underbrace{\mathcal{C}}_{\mathbf{N}} \cos\left(\Delta mt\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \sin\left(\Delta mt\right) - \underbrace{\mathcal{C}}_{\mathbf{N}} \cos\left(\Delta mt\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \sin\left(\Delta mt\right) - \underbrace{\mathcal{C}}_{\mathbf{N}} \cos\left(\Delta mt\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \sin\left(\Delta mt\right) - \underbrace{\mathcal{C}}_{\mathbf{N}} \cos\left(\Delta mt\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \sin\left(\Delta mt\right) - \underbrace{\mathcal{C}}_{\mathbf{N}} \cos\left(\Delta mt\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \sin\left(\Delta mt\right) - \underbrace{\mathcal{C}}_{\mathbf{N}} \cos\left(\Delta mt\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M}_{\mathbf{N}} = \underbrace{\mathcal{S}}_{\mathbf{N}} \left(\frac{1 - |\lambda^{2}|}{1 + |\lambda^{2}|}\right) \\ \mathbf{M$$

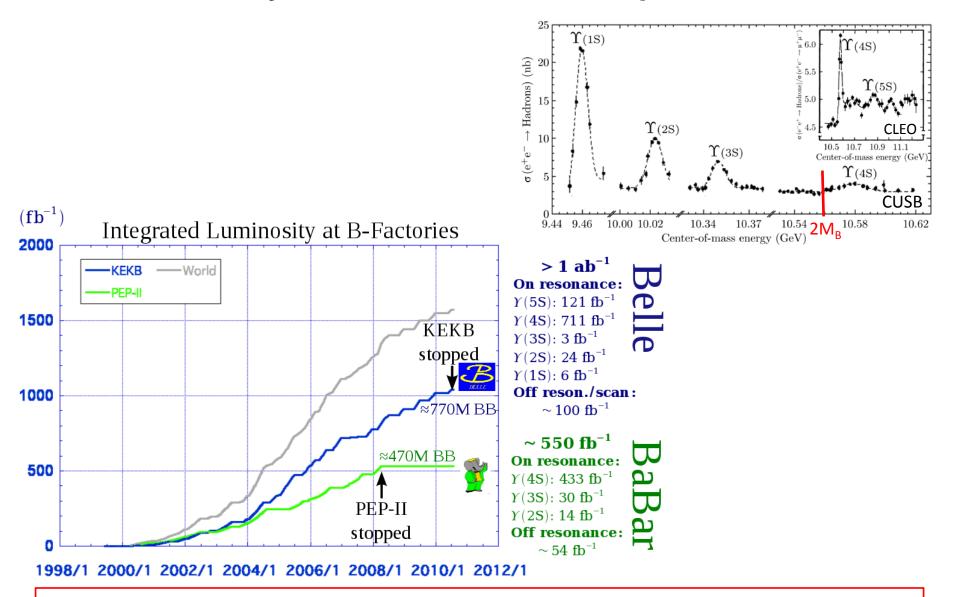
• Example $B^0 \to J/\psi K^0_S$ (benchmark for $\sin(2\beta)$):


 \rightarrow mixing vertices V_{td} introduce phase $\rightarrow S = -\eta_{f_{\rm CP}} \sin(2\beta)$ and C = 0

 β can be precisely determined from the time-dependent CP asymmetry $A_{CP}(t) = -\eta_{f_{CP}} \sin(2\beta) \sin(\Delta m t)$

07/23/2015

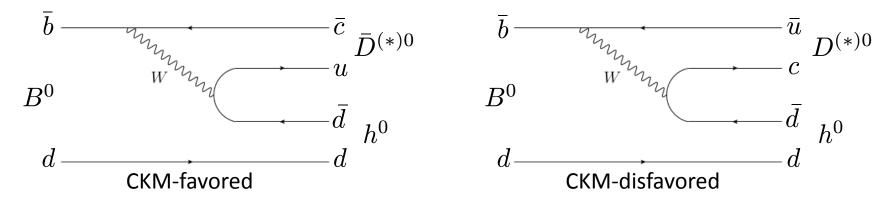
Markus Röhrken Combined BaBar+Belle Analysis of ${f B^0} o {f D_{CP}^{(*)}}{f h^0}$


The BABAR and Belle Experiments

07/23/2015

Markus Röhrken Combined BaBar+Belle Analysis of $\mathbf{B}^{0} \rightarrow \mathbf{D}_{CP}^{(*)}\mathbf{h}^{0}$

Data Recorded by the BABAR and Belle Experiments



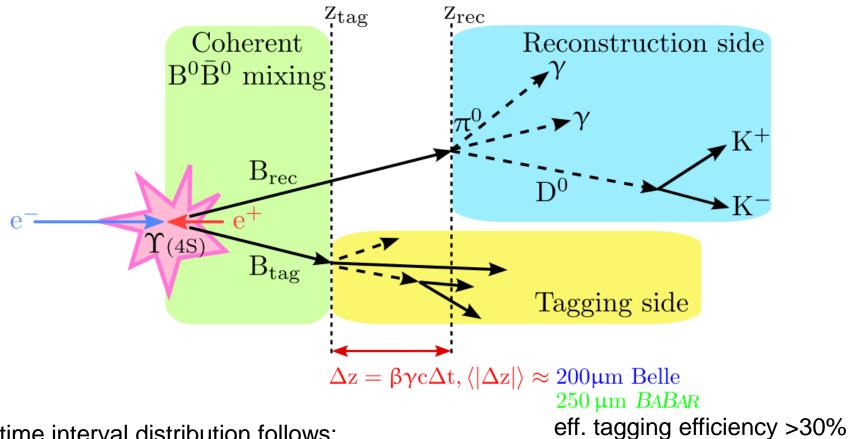
Combined Belle+BABAR analysis to make full use of the \approx 1240×10⁶ BB collected on the Υ (4S)

07/23/2015

Markus Röhrken Combined BaBar+Belle Analysis of $\mathbf{B^0} \to \mathbf{D_{CP}^{(*)}h^0}$

Combined Belle and BABAR Analysis of $B^0 \rightarrow D_{CP}^{(*)}h^0$

- $B^0 \rightarrow D_{CP}^{(*)}h^0$ decays with $h^0 \in {\pi^0, \eta, \omega}$ mediated only by tree-level amplitudes
- Theoretically clean [NPB 659, 321 (2003)]:
 - \rightarrow Enables to test the precision measurements of $\mathrm{b}\rightarrow\mathrm{c\bar{c}s}$
 - \rightarrow Can provide a SM reference of $\sin(2\beta)$, e.g. for BSM searches in $b \rightarrow s$ penguins
- Experimental difficulties: Low B and D_{CP} branching fractions [$O(10^{-4})$ and $O(\le 10^{-2})$]
 - Low reconstruction efficiencies
 - Significant background
- Previous measurements by Belle and <code>BABAR</code> could not establish CPV in ${\rm B}^0
 ightarrow {\rm D}^{(*)}{\rm h}^0$


Perform time-dependent CP violation measurement combining Belle+BABAR data

07/23/2015

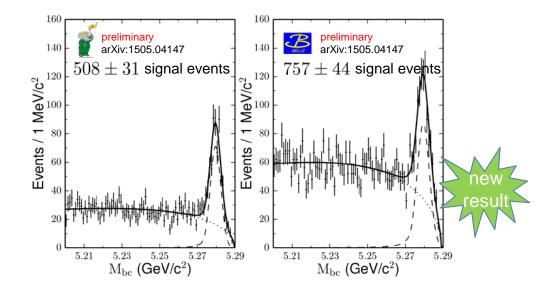
Markus Röhrken Combined BaBar+Belle Analysis of $\mathbf{B}^{0} \rightarrow \mathbf{D}_{CP}^{(*)}\mathbf{h}^{0}$

Combined Belle and BABAR Analysis of $B^0 \rightarrow D_{CP}^{(*)}h^0$

Threshold $B\bar{B}$ production on the $\Upsilon(4S)$:

Proper time interval distribution follows:

$$\mathcal{P}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} \left[1 + q\left(\boldsymbol{\mathcal{S}}\sin(\Delta m \Delta t) - \boldsymbol{\mathcal{C}}\cos(\Delta m \Delta t)\right)\right]$$


Experimental effects due to finite vertex resolution and imperfect tagging are important

07/23/2015

Markus Röhrken Combined BaBar+Belle Analysis of ${f B^0} o {f D^{(*)}_{CP}} {f h^0}$

Combined Belle and BABAR Analysis of $B^0 \rightarrow D_{CP}^{(*)}h^0$

- Reconstruct $B^0 \to D_{CP}^{(*)}h^0$ with h^0 in $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma$, $\pi^+\pi^-\pi^0$ and $\omega \to \pi^+\pi^-\pi^0$ $D_{CP} \to K^+K^-, K_S^0\pi^0, K_S^0\omega$ $D^{*0} \to D_{CP}\pi^0$
- In total 12 final states are reconstructed (7 CP-even and 5 CP-odd states)
- Suppression of $e^+e^- \rightarrow q\bar{q} \ (q \in \{u, d, s, c\})$ continuum background by neural networks
- Coherent analysis strategy, apply almost same selection on Belle and BABAR data
- Extract signal from beam-constrained mass $M_{bc} \equiv m_{ES} = \sqrt{(E_{beam}^*/c^2)^2 (p_B^*/c)^2}$

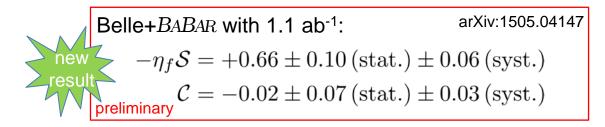
07/23/2015

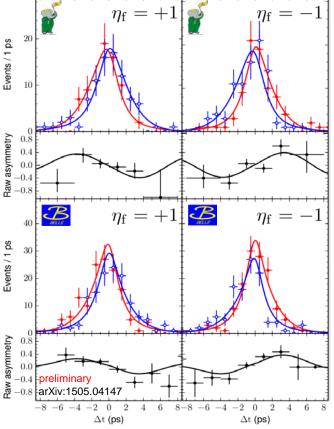
Markus Röhrken Combined BaBar+Belle Analysis of ${f B^0} o {f D_{CP}^{(*)}} {f h^0}$

Combined Belle and BABAR Analysis of ${f B^0} o {f D_{CP}^{(*)}}{f h^0}$

Perform measurement by maximizing the combined log-likelihood function:

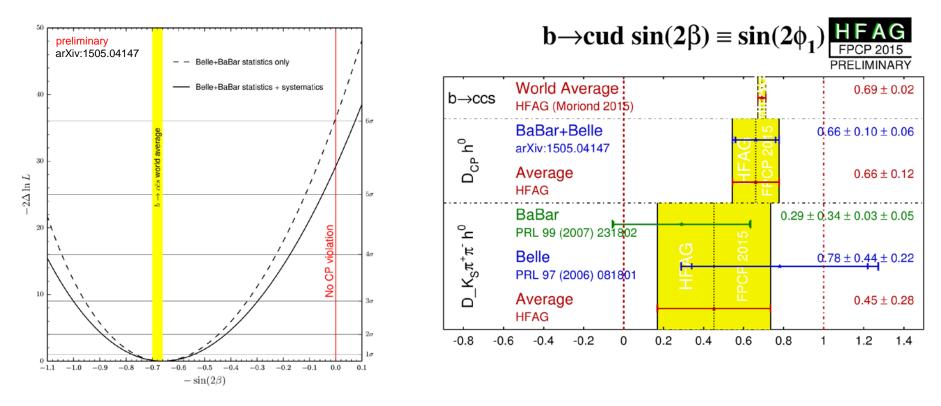
$$\ln \mathcal{L} = \sum_{i} \ln \mathcal{P}_{i}^{BABAR} + \sum_{j} \ln \mathcal{P}_{j}^{Belle}$$


• Physics PDFs are convoluted with specific resolution functions


$$\mathcal{P}^{\mathrm{Exp.}} = \sum_{k} f_{k} \int \left[P_{k} \left(\Delta t' \right) R_{k} \left(\Delta t - \Delta t' \right) \right] d \left(\Delta t' \right)$$

- Apply Belle and *BABAR* specific resolution models, and flavor tagging algorithms
- Apply common signal model:

$$P_{sig}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} \left[1 + q \left(\mathcal{S}\sin(\Delta m \Delta t) - \mathcal{C}\cos(\Delta m \Delta t)\right)\right]$$


• SM prediction $-\eta_f S = \sin(2\beta)$ and C = 0

Markus Röhrken Combined BaBar+Belle Analysis of ${f B^0} o {f D}_{{f CP}}^{(*)}{f h^0}$

Combined Belle and BABAR Analysis of ${\bf B^0} \to {\bf D_{CP}^{(*)}}{\bf h^0}$

- Very good agreement with the $\sin(2\beta)$ world average from $b \to c\bar{c}s$
- Exclude the no-mixing induced CP violation hypothesis at 5.4 σ \rightarrow First observation of CP violation in $B^0 \rightarrow D_{CP}^{(*)}h^0$ decays
- First measurement performed on more than 1 ab⁻¹ collected on the $\Upsilon(4S)$

07/23/2015

Markus Röhrken Combined BaBar+Belle Analysis of $\mathbf{B}^{0} \rightarrow \mathbf{D}_{CP}^{(*)}\mathbf{h}^{0}$

Summary

Performed CP violation analysis of $B^0 \rightarrow D_{CP}^{(*)}h^0$ combining final *BABAR* and Belle data sets:

- First analysis using more than 1 ab^{-1} collected on the $\Upsilon(4S)$
- No sign of direct CP violation
- Exclude the no-mixing induced CP violation hypothesis at 5.4σ

 \rightarrow First observation of CP violation in $B^0 \rightarrow D_{CP}^{(*)}h^0$ decays

- Very good agreement with $\sin(2\beta)$ from $b \to c\bar{c}s$
- Paper has been submitted to Physical Review Letters (arXiv:1505.04147)