TAU NEUTRINO PHYSICS IN SHiP

Giovanni De Lellis
University Federico II and INFN
Naples, Italy
On behalf of the SHiP Collaboration
45 Institutes from 14 Countries
Motivation For ν_τ Studies

- Less known particle in the Standard Model
- 9 events (with an estimated background of 1.5) reported in 2008 with looser cuts
 \[\sigma^{\text{const}} (\nu_\tau) = (0.39 \pm 0.13 \pm 0.13) \times 10^{-38} \text{ cm}^2 \text{ GeV}^{-1} \]
- 5 ν_τ candidates reported by OPERA for the discovery (5.1σ result) of ν_τ appearance in the CNGS neutrino beam
 arXiv:1507.01417 [hep-ex]
- Tau anti-neutrino never observed
SHiP At CERN
Search for Hidden Particles

2 x 10^{20} \text{ pot at the SPS (400 GeV)}
Facility Ideal To Study ν_τ Physics

$$N_{\nu_\tau + \bar{\nu}_\tau} = 4N_p \frac{\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_s} Br(D_s \to \tau) = 2.85 \times 10^{-5} N_p = 5.7 \times 10^{15}$$

$$\sigma_{c\bar{c}} = 18.1 \pm 1.7 \, \mu\text{barn}$$

Physics Reports 433 (2006) 127

$$Br(D_s \to \tau) = (5.54 \pm 0.24)\%$$

PDG 2014

$$f_{D_s} = (7.7 \pm 0.6^{+0.5}_{-0.4})\%$$

JHEP 1309 (2013) 058

$$\sigma_{c\bar{c}} \propto A$$

$$\sigma_{pN} \propto A^{0.71}$$

NA27 with 400 GeV protons

Cacciari, Greco, Nason JHEP 9805 (1998) 007

Cacciari, Frixione, Nason JHEP 0103 (2001) 006

arXiv: 1504.04855 SHiP Physics Proposal
At the beam dump

\[N_{\nu_{\tau}} = N_{\bar{\nu}_{\tau}} = 2.8 \times 10^{15} \]

At the neutrino detector

\[N_{\nu_{\tau}} = N_{\bar{\nu}_{\tau}} = 1.4 \times 10^{14} \]

*in 5 years run (2\times10^{20}pot)

\[\varepsilon_{\text{geom}} \sim 5\% \]
\(\nu_\tau \) Interactions In The Target

Expected number of interactions*

*in 5 years run \((2 \times 10^{20} \text{ pot})\)

target mass \(\sim 9.6 \text{ ton (Pb)}\)

\[
N_{\nu_\tau} \simeq 6.7 \times 10^3
\]

\[
N_{\bar{\nu}_\tau} \simeq 3.4 \times 10^3
\]

20% uncertainty mainly from scale variations in ccbar differential cross-section

Uncertainty \((\lesssim 10\%)\) from:

• Scale choices
• Pdf
• Target mass correction

G. De Lellis, HEP 2015 Neutrino
ν_τ IDENTIFICATION A LA OPERA

THE FIRST OPERA ν_τ CANDIDATE

$\tau^- \rightarrow \rho^- \nu_\tau$
$\rho^- \rightarrow \pi^0 \pi^-$
$\pi^0 \rightarrow \gamma \gamma$

Physics Letters B691 (2010) 138
THE NEUTRINO DETECTOR

G. De Lellis, HEP 2015 Neutrino
\(\nu_\tau / \text{ANTI-} \nu_\tau \) \text{ SEPARATION}

The Compact Emulsion Spectrometer

Task
- Electric charge and momentum measurement of \(\tau \) lepton decay products
- Key role for the \(\tau \rightarrow h \) decay channel
- 3 OPERA-like emulsion films
- 2 Rohacell spacers (low density material)
- 1 Tesla magnetic field

Performances
- **Electric charge** determined up to 12 GeV
- **Momentum** estimated from the sagitta
- \(\Delta p/p < 20\% \) up to 12 GeV/c

G. De Lellis, HEP 2015 Neutrino
SIGNAL AND BACKGROUND YIELDS

Detection efficiency, charge measurement, muon identification included

$\tau \rightarrow e$ decay channel not included

Main background source: charm production in ν_μ^{CC} (anti-ν_μ^{CC}) and ν_e^{CC} (anti-ν_e^{CC}) interactions, when the primary lepton is not identified

The analysis can be improved by exploiting a likelihood approach
F₄ AND F₅ STRUCTURE FUNCTIONS

First evaluation of F₄ and F₅, not accessible with other neutrinos

\[
\frac{d^2\sigma^{\nu}(\bar{\nu})}{dx dy} = \frac{G_F^2 M E_{\nu}}{\pi(1 + Q^2/M_W^2)^2} \left(y^2 x + \frac{m_{\tau}^2 y}{2 E_{\nu} M} \right) F_1 + \left[(1 - \frac{m_{\tau}^2}{4 E_{\nu}^2}) - (1 + \frac{M x}{2 E_{\nu}}) \right] F_2 \\
\pm \left[x y (1 - \frac{y}{2}) - \frac{m_{\tau}^2 y}{4 E_{\nu} M} \right] F_3 + \frac{m_{\tau}^2 (m_{\tau}^2 + Q^2)}{4 E_{\nu}^2 M^2 x} \left(F_4 - \frac{m_{\tau}^2}{E_{\nu} M} F_5 \right)
\]

\[
F_4 = F_5 = 0
\]

- At LO $F_4 = 0$, $2x F_5 = F_2$
- At NLO $F_4 \sim 1\%$ at 10 GeV

SM prediction

\[
E(\bar{\nu}_\tau) < 38 \text{ GeV}
\]
NOT ONLY TAU NEUTRINOS

- SHiP setup ideally suited to study neutrino and anti-neutrino physics for all three active flavours
- High charmed hadrons production rates ⇒ high neutrino fluxes from their decays, including remnant pion and kaon decays
CHARM PHYSICS @SHiP

- Neutrino induced charm production
 Physics Reports 399 (2004) 277
- Advantage of the emulsion technology: topological, very loose kinematical cuts

\[
\begin{align*}
\nu_\mu^{CC} & \quad f(\text{charm}) = \frac{\int \Phi_{\nu_\mu} \sigma_{\nu_\mu}^{CC} \left(\frac{\sigma_{\text{charm}}}{\sigma_{\nu_\mu}^{CC}} \right) dE}{\int \Phi_{\nu_\mu} \sigma_{\nu_\mu}^{CC} dE} \approx 4\% \\
\nu_e^{CC} & \quad f(\text{charm}) = \frac{\int \Phi_{\nu_e} \sigma_{\nu_e}^{CC} \left(\frac{\sigma_{\text{charm}}}{\sigma_{\nu_e}^{CC}} \right) dE}{\int \Phi_{\nu_e} \sigma_{\nu_e}^{CC} dE} \approx 6\%
\end{align*}
\]

Expected charm exceeds the statistics available in previous experiments by more than one order of magnitude

<table>
<thead>
<tr>
<th>Expected events</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ</td>
<td>$6.8 \cdot 10^4$</td>
</tr>
<tr>
<td>ν_e</td>
<td>$1.5 \cdot 10^4$</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>$2.7 \cdot 10^4$</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>$5.4 \cdot 10^3$</td>
</tr>
<tr>
<td>total</td>
<td>$1.1 \cdot 10^5$</td>
</tr>
</tbody>
</table>

In NuTeV
$\sim 5100 \nu_\mu$
$\sim 1460 \text{ anti-} \nu_\mu$

In CHORUS
$\sim 2000 \nu_\mu$
$32 \text{ anti-} \nu_\mu$

No charm candidate from ν_e and ν_τ interactions ever reported!
Charmed hadron production in anti-neutrino interactions selects anti-strange quark in the nucleon.

Strangeness important for precision SM tests and for BSM searches.

W boson production at 14 TeV: 80% via ud and 20% via cs.

Fractional uncertainty of the individual parton densities $f(x; m^2_W)$ of NNPDF3.0.
Strange Quark Nucleon Content

- Improvement achieved on s^+/s^- versus x
- Significant improvement (factor two) with SHIP data

\[s^- = s(x) - \bar{s}(x) \quad \text{and} \quad s^+ = s(x) + \bar{s}(x) \]

Added to NNPDF3.0 NNLO fit, Nucl.Phys. B849 (2011) 112–143, at $Q^2 = 2 \text{ GeV}^2$
Dark Matter Search

\(\chi \) produced by a dark photon decay

\[
\chi e^- \rightarrow \chi e^-
\]

SIGNAL SELECTION

\[
\begin{align*}
0.01 < \theta < 0.02 \\
E < 20 \text{ GeV}
\end{align*}
\]

BACKGROUND PROCESSES

<table>
<thead>
<tr>
<th>Process</th>
<th>(\nu_e)</th>
<th>(\bar{\nu}_e)</th>
<th>(\nu_\mu)</th>
<th>(\bar{\nu}_\mu)</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic scattering on (e^-)</td>
<td>16</td>
<td>2</td>
<td>20</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>Quasi - elastic scattering</td>
<td>105</td>
<td>73</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resonant scattering</td>
<td>13</td>
<td>27</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep inelastic scattering</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>109</td>
<td>20</td>
<td>18</td>
<td>284</td>
</tr>
</tbody>
</table>

\(\epsilon \) = dark photon coupling with e.m. current

\(m_A = \) dark photon mass

\[P. \text{ deNiverville, D. McKeen, and A. Ritz, } \]

Phys.Rev. D86 (2012) 035022

\[\alpha' = \text{dark photon coupling with } \chi \]

\[\chi e^- \rightarrow \chi e^- \]

\[m_A = 200 \text{ MeV} \]

\[\alpha' = 0.1 \]

\[\text{POT} = 2 \times 10^{20} \]
CONCLUSIONS

• SHiP experiment proposed at CERN
• Unique tau neutrino and anti-neutrino physics
• Rich neutrino physics program
• Strange quark content
• Dark matter search
• Other topics: charmed pentaquark search, tau neutrino magnetic moment