Search for new phenomena at BaBar, Belle and LHCb

Nicolas ARNAUD

Laboratoire de l'Accélérateur Linéaire IN2P3/CNRS & Université Paris-Sud

On behalf of the BABAR

collaborations

EPS 2015 – Vienna, Austria – July 24

Outline

- Dark photon (A') and dark Higgs boson (h') searches
 - BaBar: $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow l^+l^-$ ($l=e \text{ or } \mu$)

PRL **113**, 201801 (2014)

■ Belle: $e^+e^- \rightarrow A'h'$, $h' \rightarrow A'A'$ inclusive and exclusive channels

PRL 114, 211801 (2015)

- Search for long-lived particles
 - → Identified thanks to their displaced vertices
 - BaBar: six exclusive 2-track final states $e^+e^-, \, \mu^+\mu^-, \, e^\pm\mu^{-/+}, \, \pi^+\pi^-, \, K^+K^-, \, \pi^\pm K^{-/+}$

PRL 114, 171801 (2015)

■ LHCb: pair-produced by the decay of a Standard Model (SM)-like Higgs boson and decaying into two jets

Eur. Phys. J. C75 152 (2015)

• Units with c=1 used in this talk

Context and motivation

- Standard Model (SM) complete since the discovery of the Higgs boson (LHC, 2012)
- Yet: many experimental and theorical reasons to look for new physics beyond the SM
 - → All-out searches for the new particles predicted by SM extensions
- Dark sector models B. Battel et al. (2009) R. Essig et al. (2013)
 - New hidden U(1) interaction mediated by a dark photon A'
 - → Acts as a portal between dark (hidden) sector and SM
 - A' couples to the SM hypercharge via kinetic mixing (small) mixing strength ε
 - Can mediate the annihilation of Weakly Interactive Massive Particles (WIMPs) into SM fermions: $\chi\chi \rightarrow A'A' \rightarrow (l^+l^-)$ (l^+l^-)
 - Mass in the MeV to GeV range to account for recent astrophysical observations
 - Hidden U(1) group could be spontaneously broken
 - → Dark Higgs boson(s) h'
- New long-lived neutral particles in the GeV scale predicted by several models
- Fixed target experiments and B-Factories are ideal for such searches
 - Clean environment, high luminosity
- LHCb has a unique coverage for particles with relatively small mass and lifetime
 - Transverse mometum trigger requirements lower than for ATLAS and CMS

Dark photon and dark Higgs boson searches

BaBar Monte-Carlo event showing a dark sector particle decaying into a $\mu^+\mu^-$ pair in a radiative event

Dark photon search at BaBar

514 fb⁻¹: Υ(4S), Υ(3S), Υ(2S)

- Look for narrow resonance in radiative events with two leptons in the final state
- $E(\gamma) > 200 \text{ MeV}$; 1 e or 2 μ identified
- Kinematic + geometric fits

- Converted photon events removed by a multivariate analysis
- Typical signal efficiencies: 15% (e⁺e⁻), 35% ($\mu^+\mu^-$)
- 5% of the data used to optimize the selection criteria and validate the fitting procedure

Fit procedure

- Simulated signal events generated by MADGRAPH for 35 different mass hypothesis
 - Resolution estimated by Gaussian fits; interpolated to other masses
 - \rightarrow Typical values: 1.5-8 MeV
- Series of independent maximum likelihood fits over sliding windows
 - Mass step ~half the mass resolution
 - Fit range $> 20 \times \text{mass resolution}$
 - Non-parametric kernel probability density function (pdf) for signal
 - → Shape interpolated between the simulated masses
- Background
 - Radiative Bhaba or dimuon
 - Peaking contributions included where appropriate J/ψ , $\psi(2S)$, $\Upsilon(1S)$ and $\Upsilon(2S)$
- Resonant regions excluded from the search
 - Within \pm 5 × (the experiental mass resolution of the resonance, 5-10 MeV)
- Scanned A' mass ranges for the $\Upsilon(4S)$ dataset
 - e^+e^- : 0.02 < $m_{A'}$ < 10.2 GeV (5704 fits)
 - $\mu^+\mu^-$: 0.212 < $m_{A'}$ < 10.2 GeV (5370 fits)
 - \rightarrow Lower upper mass bounds for $\Upsilon(2S)$ and $\Upsilon(3S)$ samples 9.6 and 10 GeV

Results

- Cross sections $\sigma(e^+e^- \to \gamma A', A' \to l^+l^-)$ extracted by dividing the fitted signal yields by the product of the reconstruction efficiency times the integrated luminosity
- Statistical significance S computed by comparing the likelihood values

for the nominal fit (L) and the null hypothesis (L_0)

$$S = \sqrt{2\log(\mathcal{L}/L_0)},$$

- Largest fluctuations
 - e^+e^- : 3.4 σ @ $m_{A'} = 7.02 \text{ GeV}$
 - $\mu^{+}\mu^{-}$: 2.9σ @ m_{A'} = 6.09 GeV
 - → p-values consistent with the null hypothesis including trial factors: 0.57 and 0.94 respectively
- No signal found at 214 MeV
 - Mass of the event excess reported by HyperCP

Constraints on physics model

- $\sigma(e^+e^- \to \gamma A')$ extracted using theoretical predictions for BF(A' \to l⁺l⁻) and combining the results of the dielectron and dimuon channels
- No signal observed \Rightarrow Bayesien 90% C.L. upper limits in the 1-10 fb range
- Finally, results translated into 90% C.L. upper limits on ε (the mixing strength between the photon and the dark photon) as a function of $m_{A'}$

- Previous constraints significantly improved
- Parameter space range favored by the (g-2)_μ interpretation constrained further: only the region 15÷30 MeV still allowed → Later excluded by NA48/2 for A'→e⁺e⁻ (not for μ⁺μ⁻)
- New results from BES-III as well

Belle-2 prospect for this radiative decay

- $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$ or $\mu^+\mu^-$
- Improved low-multiplicity trigger required

Dark photon and dark Higgs boson search at Belle

- Prompt decays for A' (dark photon) and h' (dark Higgs boson)
 - Tracks selected with small impact parameter
- $m_{h'} > 2 m_{A'} (h' \rightarrow A'A')$
- Scanned parameter space
 - $0.1 < m_{A'} < 3.5 \text{ GeV}$
 - $0.2 < m_h$, < 10.5 GeV

- Analysis channels
 - 10 exclusive: $3(1^+l^-)$, $2(1^+l^-)(\pi^+\pi^-)$, $2(\pi^+\pi^-)(1^+l^-)$ and $3(\pi^+\pi^-)$ with l=e or μ
 - 3 inclusive: 2(1+1-)X, X being a dark photon detected via its missing mass
- Keep combinations with the 3 « A' » masses close
- Signal simulated with MADGRAPH
- Background extracted from data using
 - « same sign » events: 2(1+1-)(1-1-)
 - Sideband method to estimate contribution in signal region

Observed events

- Selected events in the
- m_h , vs m_A , plane

 Corresponding projections on both axis
 Red dots: signal candidates $\frac{80}{50}$
- Blue squares: background prediction
- Normalized residuals

Final-state

 $3(e^{-}e^{+})$

 $3(\mu^{+}\mu^{-})$

Events

147

Number of observed

events per channel

Final-state

 $2(\mu^{+}\mu^{-})(e^{+}e^{-})$

 $2(\mu^+\mu^-)(\pi^+\pi^-)$ $2(\pi^+\pi^-)(e^+e^-)$

Events

5

6

30

Belle

Results

- All numbers of observed events consistent with background estimates
 - 90% C.L. upper limits on the product (branching fraction) × (Born cross section)

Constraints on dark sector models

- Examples of upper limits on $\alpha_D \times \epsilon^2$ for various h' and A' masses
 - Black: BaBar constraints on the visible cross section PRL 108 211801 (2012)
 - Red: Belle constraints on the Born cross section this analysis
 - → ISR effects not negligible, to be taken into account for comparison

- Results scale nearly linearly with integrated luminosity
 - → Promising for Belle-2

Search for long-lived particles

Radiography of the BaBar inner detector based on $\pi^+\pi^-$ conversion pairs passing generic cuts

Search for long-lived neutral particles at BaBar

- B-factories suitable for searches in the GeV mass range
 - Various sub-GeV (NuTeV) and multi-GeV (Tevatron, LHC) searches
- Six exclusive final states (two particles of opposite charges) for the long-lived neutral spin-0 particle (« LoLiP ») L

- BaBar $\Upsilon(2S)$, $\Upsilon(3S)$ & $\Upsilon(4S)$ datasets used: 489 fb⁻¹
 - 5% data used to validate the analysis procedure not used in the final sample
- Twofold analysis
 - Model-independent results
 - \rightarrow Product of the inclusive production cross section $\sigma(e^+e^- \rightarrow LX)$
 - \times the branching fraction B(L \rightarrow final state) \times the efficiency ε (final state)
 - \rightarrow Efficiency tables $\varepsilon(m_L, p_T, c\tau_L)$ provided to compare data with any model
 - Model-dependent results: Higgs portal-type model (inflaton mixing with SM H)
 - \rightarrow Set limits on the branching fraction B(B \rightarrow X_sL),
 - X_s hadronic system with strangeness -1

Analysis method

- Look at displaced vertices:
 - 1 < r < 50 cm in the transverse plane XY
- 2-track invariant mass cuts dependent on the final state
 - Reject background from K_S and Λ
- Dominant background: random combination of tracks in high-multiplicity hadronic events and/or interactions with detector material
- Unbinned extended maximum likelihood fit
 - Signal PDF ∝ mass resolution from signal MC
 - Background PDF: second-order polynomial spline obtained from data
 - Scan mass ranges in 2 MeV steps
- Statistical significance extracted from the ratio of likelihood values with and without signal

Results

- No significant signal found
 - \rightarrow 90% C.L. upper limits set
 - Two points have significance larger than 3
 - → Fluctuations expected when including the « look elsewhere » effect
 - → Several events are likely misidentified photon conversions
- Model-independent upper limits

Higgs portal-type upper limits

Search for long-lived particles decaying to jet pairs at LHCb

- Parameter space scanned
 - 25 < mass < 50 GeV
 - → Lower bound coming from jet identification
 - → Upper bound from LHCb acceptance
 - 1 < lifetime < 200 ps
- Decay chain: $H \to \pi_v \pi_v$, $\pi_v \to b\bar{b}$ (also: $c\bar{c}$ and $s\bar{s}$)
 - H: 120 GeV SM-like Higgs boson
 - π_{v} : long-lived massive particle
- Two hadronic jets originating from a displaced vertex
 - $-0.4 \text{ mm} < R_{xy} < 4.8 \text{ mm}$
 - → Reject background from heavy flavor decays
 - → Select vertices inside the beampipe, avoid background generated by beampipe wall

Masses: 25, 35, 43, 50 GeV

- Dataset: 0.62 fb⁻¹ recorded at 7 TeV
 - Dedicated trigger implemented during the second half of 2011
- Simulated samples
 - Lifetimes of 10 ps and 100 ps
 - → Reweighting to study other lifetimes

Analysis

- 5-10% trigger efficiency
 - Jets are triggering the event
- Secondary vertex reconstruction
- Jet reconstruction
 - Particle flow method
 - Anti-k_T jet clustering algorithm
 - Jet energy correction
 - → Account for multiple interactions and underlying event
- The dijet invariant mass is the discriminating variable
- Additional « jet quality » requirements to enhance signal purity
 - Dijet candidate pointing back to the primary vertex
 - Jets not back-to-back (background)

Fit

- Maximum likelihood fit to the invariant mass distribution
 - Assuming smooth background shape
 - \rightarrow Simultaneous fit in five R_{xy} bins
- Signal PDF parameters fixed in MC
- Background parameters free in the fit
- Systematics
 - Vertex finding
 - Track finding
 - Displaced tracks
 - Jet selection
 - Jet energy scale
 - « Jet quality »
 - Trigger

~13% relative uncertainty

- Nominal one gives the most conservative limits
- \rightarrow No additional systematics

mass $[GeV/c^2]$

Results

- No significant signal observed
 → 95% C.L. upper limits set
- Stronger limits with increasing mass
 - Background decreases
- Assumption: 100% decay $\pi_v \rightarrow q\bar{q}$
 - Limits scale like $1/(\mathcal{B}_{q\overline{q}}(2-\mathcal{B}_{q\overline{q}}))$ with $B_{q\overline{q}}$ being the branching fraction $\pi_{v} \to q\overline{q}$

- Most sensitive measurement limits the branching fraction H $\rightarrow \pi_{\nu} \pi_{\nu}$ to 25%
 - Assuming a SM Higgs boson cross section of ~17 pb @ 7 TeV
- Parameter space region unexplored at the LHC so far
- Upper limits improved w.r.t. to those coming from the Tevatron experiments

Outlook

- Several searches for new particles (dark sector, long lived neutral particles) performed at BaBar, Belle and LHCb
- No significant signal found in any mode
 - → Upper limits set, which constraint theoretical models
- Improvements expected from future experiments
 - Belle-2, LHC Run 2

