

The CMS Level-1 Trigger for Run-II

Costas Foudas
University of Ioannina Greece and CERN
On behalf of the CMS Level-1 Trigger Group

Goals of the Level-1 Trigger Upgrade for Run-II

Electron and Photon Triggers

- Better isolation for electron/photon triggers
- Pile up subtraction
- •The new electron/photon algorithms is similar to offline

Jet triggers based on calorimeter towers (0.087x0.087)

- A factor of 16 better granularity and pile-up subtraction
- Improvement of jet η and φ resolutions

Tau Trigger

- Much improved efficiency and modest rata reduction
- Capability of triggering at hadronic taus
- Pile-up subtraction

Muon Triggers

- Improvement of the muon P_T-Resolution
- Significant reduction of background rates at high n
- Capability for introducing new triggers

Level-1 Trigger Strategy

- •Build a very flexible trigger to adapt to the physics needs of CMS from LS1 to LS3, and provide basis for further development and expansion for beyond LS3
- •CMS must have a functional trigger, appropriate to LHC running conditions, at all times
- •Build up in parallel ready for running in 2016 to safeguard CMS physics, decouple from LHC schedule
- •Implement low-risk, modifications to the present trigger during LS1 to ensure improved performance at startup in 2015
- •See: http://cds.cern.ch/record/1556311/files/CMS-TDR-012.pdf

Calorimeter: Time Multiplexed Trigger

TMT Design:

- (1) Eliminates boundaries and can take data at full detector granularity
- (2) Allows for more flexibility in algorithm design
- (3) It can be upgraded in a 'straight-forward' way
- (4) It brings the LvI-1 capabilities closer to HLT

FPS HFP2015 Vienna Austria

CMS L-1 Trigger Hardware Platforms in µTCA

MP7 (Calo Trigger Layer-2):

- 72 I/O Optical Links at 10 G, Virtex-7 690 FPGA
- Also used for, Global Trigger, Global Muon Trigger and the Barrel Muon Track Finder

- •67 Rx, 48 Rx Links at 10 G
- Virtex-7 690 FPGA

- Optimized for maximum input from muon detectors (84 Rx, 28 Tx @ 10 Gbps)
- Dual card with large capacity RAM (~1GB) for p_⊤ assignment in track finding
- Modular µTCA designs which allow for
 Different trigger architectures

 - Adding more processors as needed
 - Data exchange via the μTCA backplane (point-to-point)

L1- Electron Finding Algorithms

- Search for seeds with E_T>2 GeV threshold
- Form 3x3 calorimeter tower proto-clusters
 - Dynamical Trimming (Brem., Posit., E_T resol.)
 - Towers with E_T > 1 GeV are clustered.
 - The side in η with the maximum E_T is kept.
 - Corners kept only if linked to the seed.
 - Extensions in φ are added if linked to the seed.

 e/γ like

jet like

- Require Fine Grain Bit and H/E cut
 - The Fine Grain Bit requires that the energy deposition within a tower is consistent with that from an electron (ϕ band of crystals).
 - H/E < 0.040 in the EndCap and H/E < 0.015 in the Barrel
- Require a 9x5 tower isolation window
 - $E(5x9)-H(1x2)-E(2x5) < Isol-cut (nTT, \eta)$
- 9 Possible Impact points based on cluster shape

L1- Electron Finding Performance

- Market improvement in η , ϕ , and E_T resolutions.
- Sharper threshold curves to reduce backgrounds.
- Non Iso-e rates by ~2 lower for E_T <20 GeV and 10-20% lower for E_T >30 GeV.
- Iso-e rates 30% lower than before.

Level-1 Tau Triggers

- 1-prong or 1-Prong + π^0 : Use e/gamma clusters with E+H and no H/E cut (2x3).
- 3-prong: Search for extra seed in the φ direction and if found combine clusters.
- Dynamically assign the tau footprint based on cluster shape (5x9, 3x5, 2x5).
- Isolation based on a 5x9 window.
- Dramatic improvement in efficiency; modest rate reduction; E_T>20 GeV possible.

CMS Level-1 Jet Trigger Performance

- Use a 9x9 tower mask which ~ R=0.4
- Compare all trigger tower depositions in the mask with the seed.
 - Use > for blue
 - Use ≥ for purple
- If the above statement is TRUE then veto the jet and move on to another seed.
- For Pile-up Subtraction two approaches:
 - Global jet based p subtraction: Estimate energy to subtract off jet using the median of calorimeter energy deposits, see arXiv:0707.1378v2
 - Local subtraction: Estimate energy to subtract off jet using a region local to the jet, see arXiv:1010.1759
 - The local is currently implemented but the global will also be tried

CMS L1 Muon Track Finder Rates

- The new muon trigger aims mainly in increasing the muon P_T resolution. Hence to reduce the rate. It does this by using large LUTs (EndCap) and advanced pattern recognition (Overlap and Barrel).
- Three Muon track finders have been installed: Overlap, EndCap and Barrel.
- The first two consist of 12 MTF7 processors and the last of 12 MP7 processors.

CMS L1-Muon Trigger Efficiencies

- Modest loss of efficiency results to considerable reduction in rate.
- The efficiency loss in the Barrel (right) is minimal but it is larger in the EndCap
- All three track finders are undergoing testing at P5 and parallel running with the legacy system is to commence during September/October.
- The new muon Trigger will be operational in February 2016.

CMS L1 Global and Global Muon Trigger

- Use the one MP7 trigger processor but has been designed to be expandable by adding more MP7s. Firmware for the basic trigger menu has been tested.
- To be commissioned in September 2015

Trigger Electronics at P5

- All trigger groups have installed electronics at P5 and testing has started.
- Calo. Trig., uGT, uGMT, EndCap Muon TF: Complete.
- Barrel and Overlap to be completed by Sep. 2015.
- Parallel running with Legacy Trig. In the Fall 1025.

CMS Level-1 Trigger Summary

- CMS is Looking forward to the High Luminosity LHC runs and is confident that will be able to exploit the full physics potential of the data.
- The new Level-1 trigger system will enable CMS to operate at high luminosity and high pile-up with a better selection efficiency.
- It is planned to start taking data with the new trigger early in 2016. However, a small scale upgrade of the calorimeter trigger has been commissioned and is ready to go in for the 25ns run. And this will give:
 - Improved isolation for electron triggers
 - Improved tau trigger
 - Pile-up subtraction
- We are getting ready for new discoveries starting in 2015.
- We feel confident that with the upgraded detector we will be able to measure the Higgs properties with increased precision.