Exotic Mesons: Measurements and Searches at ATLAS and CMS

J. Walder Lancaster University

On behalf of the ATLAS and CMS Collaborations

23/07/2015 - EPS, Vienna

LHC GPD Detectors: ATLAS and CMS

- General Purpose Detectors

	ATLAS	CMS
Axial Magnetic field	2 T	3.8 T
Track momentum resolution σ/p_T^2 [GeV] ⁻¹	~0.05%p _T + 0.015	~0.015%pt + 0.005
Lifetime resolution	~100 fs	~70 fs
ID tracking ŋ _{max}	2.5	2.5
Muon System η _{max}	2.7	2.4

23/07/2015 – EPS, Vienna, J.Walder

2

X(3872) Production

- CMS measurement of X(3872) production cross-section in the decay $J/\Psi\pi\pi$
 - Under assumptions of: Unpolarised, J^{PC}=1⁺⁺
- Inclusive ratio R: (in corrected region)

 $R = \frac{\sigma(\text{pp} \rightarrow X(3872) + \text{anything}) \cdot \mathcal{B}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-})}{\sigma(\text{pp} \rightarrow \psi(2S) + \text{anything}) \cdot \mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-})} = (6.56 \pm 0.29 \text{ (stat.)} \pm 0.65 \text{ (syst.)})\%$

- Intermediate ρ^0 state favoured
- Prompt cross-section: NRQCD reasonable in shape,
 - overestimation to data
- Average Non-prompt fraction 0.263±0.023(stat.)± 0.016(syst.)

154

20 MeV

- First seen at CDF: <u>arXiv: 0903.2229v2</u>
- Identified through 5-track vertex fit, $m(J/\Psi)$ constraint,
 - 1008 < m(K⁺K⁻) < 1035 MeV, using KK combination with min. mass.
- Analysis performed in bins of rel. eff. corrected $\Delta m = m(\mu\mu KK) - m(\mu\mu); B^{\pm}$ yields in 20MeV slices
- Observation (>5 σ) of peaking structure at:
 - M = 4148.0 ± 2.4 (stat.) ± 6.3 (syst.) MeV
 - $\Gamma = 28^{+15}_{-11}$ (stat.) ± 19 (syst.) MeV
- First structure consistent with X(4140)
 - and rel. Br = $0.1\pm^{0.3}$, consistent with CDF and LHCb upper limits.
- Evidence of second structure at:
 - M = 4313.8 ± 5.3 (stat.) ± 7.3 (syst.) MeV
 - Γ = 38⁺³⁰-15 (stat.) ± 16 (syst.) MeV
 - Possible complications from φK resonances
- Full amplitude analysis for $J/\Psi KKK$ needs increased statistics and improved knowledge on φK^+ or $J/\psi K^+$ resonances, 23/07/2015 - EPS, Vienna, J.Walder 4

Search for Exotic Bottomonium-like States

- X_b : Analogue of X(3872) expected in bottomonium sector
 - Various theoretical models / approaches to explore sector
 - 10,562 GeV ($B\bar{B}$) , 10,604 GeV ($B\bar{B}^{\star}$) thresholds
 - Alternative possibilities also allowed in ranges 10 11 GeV.
- CMS: $\sqrt{s} = 8 \text{ TeV}$, L = 20.7 fb⁻¹; <u>PLB 727 (2013) 57-76</u>
- ATLAS: $\sqrt{s} = 8$ TeV, L = 16.2 fb⁻¹ ; <u>PLB 740 (2015) 199-217</u>
 - ATLAS and CMS performed search for X_b in the decays of Y(1S) $\pi\pi$
 - cf: X(3872) to J/ Ψ nn: Branching Ratio of 6.56% relative to Ψ (2S) to J/ Ψ nn

$$R = \frac{\sigma(\mathrm{pp} \to X_b \to \Upsilon(1\mathrm{S})\pi^+\pi^-)}{\sigma(\mathrm{pp} \to \Upsilon(2\mathrm{S}) \to \Upsilon(1\mathrm{S})\pi^+\pi^-)} = \frac{\sigma \cdot \mathcal{B}}{\sigma_{2\mathrm{S}} \cdot \mathcal{B}_{2\mathrm{S}}}$$

ATLAS search also for $\Upsilon(1^3D_J)$, $\Upsilon(10860)$ and $\Upsilon(11020)$

Sample Selection

- Selection optimised to maximise $e^{\frac{1}{2}}$ pected significance near Y(2S)

	ATLAS	CMS	
$pT(\Upsilon(1S)\pi\pi) >$	5	13.5	GeV
$ \mathbf{y}(\mathbf{Y}(1\mathbf{S})\mathbf{\pi}\mathbf{\pi}) <$	2.4	2.0	
$\chi^2(\Upsilon(1S)\pi\pi) <$	20	P>10%	
p T(μ) >	4	2.5	GeV
η(μ) <	2.3	2.1	
pT(μμ)>	_	13.5	GeV
y(μμ) <	—	2.0	
$\chi^2(\mu\mu) <$	100	P>1%	
$pT(\pi) >$	400	400	MeV
$ \eta(\pi) <$	2.5	2.5	
$\mathbf{p}(\chi^2(\pi\pi)) >$	—	10%	
$\Delta R(\pi, \Upsilon(1S)) <$	_	0.7	

- For efficiency determinations, MC is reweighted to CLEO di-pion mass distributions.
- Central results is presented under assumption of zero polarisation (isotropic).
 - Variations of spin-alignment envelope considered:
 - CMS: systematic from fully transverse or longitudinal.
 - ATLAS: reassessed for different spin-alignment hypotheses.
- All candidates passing selections retained in analysis
 - CMS: ~2.3 candidates per-event
 - ATLAS: ~19.5 candidates per-event

Sensitivities (I)

- ATLAS studied data according to:

maximise significance for weak signal

- cos θ* vs pT(Υ(1S)ππ)
 - Retain all data,

at M = 10.561 GeV

- ATLAS
- θ* angle between
 di-pion momentum in
 parent rest-frame and
 parent lab-momentum

Sensitivities (II)

- Data sample separated into 2³
 regions:
 - 2x Rapidity:
 - Mass resolution varies with parent rapidity |y| due to detector effects

- 2x pT:
- 2x cos θ*;
- highest S/B at high-pT,
 large cos θ*, small |y|
- Simultaneous fits to all regions

Mass Distributions

9

- Selected Y(1S) $\pi\pi$ distributions for the central and forward regions of the detectors (ATLAS shown for most sensitive pT and cos θ^* bins).
 - Clear $\Upsilon(2S)$ and $\Upsilon(3S)$
 - No obvious additional structures seen.

Signal Extraction

$$R = \frac{\sigma(\mathrm{pp} \to X_b \to \Upsilon(1\mathrm{S})\pi^+\pi^-)}{\sigma(\mathrm{pp} \to \Upsilon(2\mathrm{S}) \to \Upsilon(1\mathrm{S})\pi^+\pi^-)} = \frac{\sigma \cdot \mathcal{B}}{\sigma_{2\mathrm{S}} \cdot \mathcal{B}_{2\mathrm{S}}}$$
$$N_{\mathrm{X}_b}^{\mathrm{obs}} = R \times N_{\Upsilon(2\mathrm{S})}^{\mathrm{obs}} \times \frac{\epsilon_{\mathrm{X}_b}}{\epsilon_{\Upsilon(2\mathrm{S})}}$$

- Efficiency x Acceptance corrections from MC
- Perform hypothesis test, 10 MeV intervals: ~10-11 GeV (veto Y(2,3S))
 - Signal shape parameters fixed to simulation;
 - signal strength allow to float
- Normalised to Υ (2S) yields:
 - validated on Υ (3S) :
 - ATLAS: predicted: 11,400 ± 1,500
 - ATLAS: fitted: 11,600 ± 1,300
- ATLAS: Fit is performed simultaneously to the 8 (2x2x2) |y|,pT,cos0* bins

Results

 Local p-value significance (background-only hypothesis) and expected values for analogous X(3872) Branching ratio R, and weaker (3%) value (ATLAS).

- Expected significance for R = 6.56% exceeds 5σ across range.
 - CMS largest statistical significance of 0.8σ, including `look-elsewhere-effect'

Production Rate Upper Limits

- In absence of signal, upper limits on relative production rates are set:

- Upper limits on the production rate R (relative to the Υ (2S) rate):
 - CMS: 0.9 5.4 % (m > 10.06 GeV)
 - ATLAS: 0.8 4.0% (m >10.1 GeV)
 - at 95% CLs. (Y(2S) and Y(3S) mass regions excluded).
- Increased sensitivity with increasing mass for ATLAS data due to splitting up of data (most sensitive bin with falling background mass-shape)

Limits under Spin-Alignment Variation

- Υ (2S) measured to have negligible polarisation, arXiv:1209.2922
 - expected that produced Υ (1S) similarly polarised.
- X_b however is unknown.

 ATLAS presents upper limits for longitudinal and three transverse spin-alignment scenarios.

Search for $\Upsilon(1^3D_J)$, $\Upsilon(10860)$ and $\Upsilon(11020)$

- Y(1³D_J) triplet fit attempted with additional signal shapes for the three masses: 10,156, 10,164, and 10,170 MeV.
 - No excess of events over background observed.
 - Upper limit of relative cross-section: $\sigma(\Upsilon(1^{3}D_{J})) / \sigma(\Upsilon(2S)) < 0.55$.
 - (using Br($\Upsilon(1 D_J) \rightarrow \Upsilon(1S)\pi\pi = (6.6 \pm 1.6) \times 10^{-3}$)
- Broad resonances Y(10860) and Y(11020) searched for in grid of mass and width, (using world-average masses and uncertainties).
 - largest significances of z=1.1 and 0.6 found,
- No evidence for the production of Y(10860) of Y(11020).
- Plots shown with rates $\sigma_{10860} = 10\sigma(2S)$ $\sigma_{11020} = \sigma(2S) \times B(2S)$

Summary

- In the production and decays of Exotic mesons at ALTAS and CMS:
- CMS reports:
 - Measurement of inclusive, and prompt differential cross-section of X(3872), and NPF.

JHEP04(2013)154

CMS: PLB 727 (2013) 57-76

- ATLAS: PLB 740 (2015) 199-217

- Measurement of peaking structure in $B^{\pm} \rightarrow J/\Psi \phi K^{\pm}$ PLB 734(2014)261-281
 - Mass consistent with previously observed X(4140).
- ATLAS and CMS present limits:
 - search for X_b in the decays of Y(1S) $\pi\pi$
- No evidence of Narrow resonance that decays into $\Upsilon(1S)\pi\pi$
 - Upper limit on Production Ratio set (95% CL):
 - 0.9-5.4% (CMS) and 0.8-4.0% (ATLAS) dependent on mass.
 - Analogous value R=6.56% excluded.
 - Limit calculations under spin-alignment scenarios computed
 - No evidence for $\Upsilon(1^3D_J)$, $\Upsilon(10860)$ and $\Upsilon(11020)$
- Expected isospin suppression of $\Upsilon(1S)\pi^{+}\pi^{-}$ limit yields (cf X(3872)),
 - Isospin allowed modes present greater challenges to GPD detectors (low acceptance)
 M. Karliner, J. Rosner, PRD91 (2015) 014014; 1410.77293 [hep-ph]
- Turn over all 'stones', revisit $\chi_b(3P)$ for possible mixing scenarios.

Backup

Results from ATLAS and CMS

Experiment	Luminosity [fb ⁻¹]	Energy [TeV]	Title
CMS	4.8	7	<u>Measurement of the X(3872) production cross section</u> JHEP 04 (2013) 154, arXiv:1302.3968
CMS	5.2	7	<u>Observation of a peaking structure in the J/ψφ mass</u> spectrum from B± decays arXiv:1309.6920
CMS	20.7	8	Search for a new bottomonium state decaying to Y(1S) π + π - in pp collisions at \sqrt{s} = 8 TeV PLB 727 (2013) 57, arXiv:1309.0250
ATLAS	16.2	8	<u>Search for the Xb and other hidden-beauty states in the π</u> +π- Y(1S) channel at ATLAS PLB 740 (2015), pp. 199-217, arXiv:1410.4409

Observations: Excited Bc Meson

- Predicted to sit below the B-D strong threshold between charmonium and bottomonium states.
- Dataset: 7 TeV $(4.9 \text{ fb}^{-1}) + 8 \text{ TeV} (19.2 \text{ fb}^{-1})$.
- B_{c}^{\pm} reconstructed in $J/\Psi(\mu\mu) \pi^{\pm}$ decay mode
 - di-muon system constrained to $m(J/\Psi)_{PDG}$
- Selection criteria optimised (separately) on $S/\sqrt{S+B}$ at each energy from MC.
 - Main analysis selections:
 - $pT(\mu 2) > 6$, $pT(\mu 1) > 4$ GeV
 - pT(π) > 400 MeV
 - Pion d₀ significance cuts
 - pT(B[±]_c) > 15 (18) GeV at 7 (8) TeV
- B_{c}^{\pm} system then combined with two additional charged pions, :
 - pT(π) > 400 MeV

Observations: Excited Bc

- Define the mass-difference:

 $Q = m(B_c^{\pm}\pi^{+}\pi^{-}) - m(B_c^{\pm}) - 2 \cdot m(\pi^{\pm})$

- to reduce effects of detector resolution
- Total significance 5.2σ
 (incl. `look-elsewhere effect')
 - 3.7 σ @ 7TeV, 4.5 σ @ 8TeV
 - Established using AlnL through
 - Pseudo-experiments
- New structure observed at mass:
- M(B_cππ) = 6,842 ± 4 (stat.) ± 5 (syst.) MeV
 - Consistent with predictions of B_c[±](2S) meson.

Data-taking in 2011–2012

CMS Integrated Luminosity, pp

- B-physics sensitive to correct choice of primary interaction vertex
- Detector data taking efficiency > 93%

11/10

17/1

Day in 2012

Triggering for B-physics

- 3-level system O(20MHz) -> O(200Hz)
 - Level 1 hardware O(75)KHz
 - Level 2 and Event Filter
 - Software-based
 - Offline-like reconstruction software
- B-physics statistics typically low-pT
- Primary B-physics triggers:
 - Two muon signals at L1
 - confirmed at L2/EF with vertexing and invariant mass criteria applied
 - Varying thresholds and prescaling applied to maximise signal rate
 - For analyses presented here typically µ4µ4 or µ6µ4 thresholds used:

 $\mu 4 \mu 4$ ($\mu 6 \mu 4$) un-prescaled for majority of 7 (8) TeV data-taking.

JHEP09(2014)079 Differential Cross-section $\Psi(2S)$ in $J/\Psi\pi\pi$

بر و

Weight correction

$\left\langle \frac{1}{A \cdot \epsilon} \right\rangle_{\text{bin}}$	$\equiv \sum_{i=1}^{N_{\text{fine}}^{\text{bin}}}$	$\frac{N_i}{A^i \cdot \epsilon^i}$	$\sum_{i=1}^{N_{\text{fine}}^{\text{bin}}} N_i,$
$\sqrt{21 \cdot e} / bin$	i=1	n·e/	i=1

Source	Relative uncertainty (%)
Common to <i>R</i> _{fiducial} and <i>R</i>	
Fit functions	1–2
$\epsilon(\mu^+\mu^-)$	< 1
$\epsilon(\pi^+\pi^-)$	1–5
Efficiency statistical precision	1–3
Specific to <i>R</i> _{fiducial}	
$X(3872) p_{\rm T}$ spectrum	2–5
$\psi(2S) p_{\rm T}$ spectrum	1-4
Total systematic uncertainty in R_{fiducial}	4–8
Specific to <i>R</i>	
$X(3872) p_{\rm T}$ spectrum	1–11
$\psi(2S) p_{\rm T}$ spectrum	1-4
$m(\pi^+\pi^-)$ spectrum	1–2
Acceptance statistical precision	1–3
Total systematic uncertainty in <i>R</i>	5–13

Polariz	ation	Relative	Polarization		Relative	
X(3872)	$\psi(2S)$	shifts (%)	X(3872)	$\psi(2S)$	shifts (%)	
CST	CSL	-28	CST	unpol	-8	
CSL	CST	+31	CSL	unpol	+22	
HXT	HXL	+86	HXT	unpol	+28	
HXL	HXT	-49	HXL	unpol	-31	
CST	CST	-1	unpol	CST	+8	
CSL	CSL	-5	unpol	CSL	-22	
HXT	HXT	-6	unpol	HXT	-27	
HXL	HXL	-1	unpol	HXL	+25	

0.09

0.08

Peaking structures in decays of $B^{\pm} \rightarrow J/\Psi \Phi K^{\pm}$

						600 г	
					∕e/		B mass signal region
	m ₁ (MeV)	Γ_1 (MeV)	m ₂ (MeV)	$\Gamma_2 (Me) \geq 160^{CM}$	20	500	$m_{\rm B}^{-1.5\sigma} < m(J/\psi\phi K) < m_{\rm B}^{+1.5\sigma}$
B ⁺ background PDF	0.8	7.4	2.6	9.9 ^S 140	/ 2	F	↓ ↓
B ⁺ signal PDF	0.2	3.6	2.7	$0.2 \frac{120}{100} \frac{1}{100} \frac{1}{100$	ites	400	$- \qquad \qquad$
Relative efficiency	4.8	6.0	0.9	10.0 ^z 80	ida	E	
Δm binning	3.7	1.5	2.7	0.2	and	300	
Δm structure PDF	0.8	9.3	0.6	4.9	ö	E	
Δm mass resolution	0.8	6.4	0.6	4.6		200	- + / +
Δm background shape	0.2	7.0	0.3	0.2		E	
Selection requirements	0.8	7.8	5.5	1.8		100	
Total	6.3	19	7.3	16		E	
						٥E	
	23/07/201	5 – EPS, Vien	na, J.Walder	25		•	1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 μ

CMS: Signal Extraction

$$R = \frac{\sigma(\mathrm{pp} \to X_b \to \Upsilon(1\mathrm{S})\pi^+\pi^-)}{\sigma(\mathrm{pp} \to \Upsilon(2\mathrm{S}) \to \Upsilon(1\mathrm{S})\pi^+\pi^-)} = \frac{\sigma \cdot \mathcal{B}}{\sigma_{2\mathrm{S}} \cdot \mathcal{B}_{2\mathrm{S}}}$$

$$N_{X_b}^{obs} = R \times N_{\Upsilon(2S)}^{obs} \times \frac{\epsilon_{X_b}}{\epsilon_{\Upsilon(2S)}}$$

- Efficiency ratio from MC,
 - MC dipion mass distributions reweighted according to CLEO data
- Signal shape parameters fixed to simulation;
 - signal strength allow to float
- Fits performed at each mass-hypothesis point.
- Assumption of zero polarisation is treated in systematics.

m(π⁺ π⁻ Υ(1S)) [MeV]

Extracted yields normalised to fitted $\Upsilon(2S)$

$$N = N_{2S} \cdot R \cdot \frac{\mathcal{A}}{\mathcal{A}_{2S}} \cdot \frac{\epsilon}{\epsilon_{2S}}$$
$$R = \frac{\sigma(\text{pp} \to X_b \to \Upsilon(1S)\pi^+\pi^-)}{\sigma(\text{pp} \to \Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)} = \frac{\sigma \cdot \mathcal{B}}{\sigma_{2S} \cdot \mathcal{B}_{2S}}$$

- Validated on $\Upsilon(3S)$
 - predicted: $11,400 \pm 1,500$
 - fitted: 11,600 ± 1,300
- Perform hypothesis test, 10 MeV intervals: 10–11 GeV (veto $\Upsilon(2,3S)$)
 - Mass window for each fit: $m\pm 8\sigma$:
 - σ : 72MeV@ 10 GeV 224MeV @10.9 GeV
 - Fit is performed simultaneously to the 8 (2x2x2) $|y|, pT, cos\theta^*$ bins

$M(\mu\mu)$ Y distributions

CMS Preliminary

 $\sqrt{s} = 8 \text{ TeV}$

 $L = 20.7 \text{ fb}^{-1}$

lyl < 1.2

10

9500

 $p_{_{T}} > 13.5 \text{ GeV}$

10.5

2012 data

Total Fit

10000

10500

m(µ+µ-) [MeV]

Background

.... Y(1S) Component Y(2S) Component

.... T(3S) Component

11

 $M_{\mu\mu}$ [GeV]

Observations: $\chi_{\rm b}(3P)$

- First published observation of a new 'particle' by LHC, reported by media.
- χ_{b} ; J^{++} triplet states of bound b b-bar pairs of Bottomonium system:
 - Studies of QCD close to the strong decay threshold
- Observation of a new state through radiative transitions to Υ (1S), Υ (2S)
 - Υ (nS) $\rightarrow \mu\mu$
- Photons reconstructed as:
 - Unconverted photons (Calorimetry)
 - Converted photons (ID)
- Mass consistent with predictions of $\chi_b(3P)$ multiplet:
 - 10.530 ± 0.005 (stat.) ± 0.009 (syst.) GeV.
- PRD 91, 014014 (2015) - Possible scenarios for mixing of χ_b (3P) with exotic X_b states – interesting further studies.

CERN Seminar – 07/07/2015

29