Penguin Pollution in $B_d \to J/\psi K_S$

Philipp Frings

in collaboration with Ulrich Nierste and Martin Wiebusch based on arXiv:1503.00859, accepted for publication in PRL

Karlsruhe Institute of Technology

Institute for Theoretical Particle Physics

EPS-HEP 2015 Vienna

1/16

The Golden Mode $B_d \rightarrow J/\psi K_S$

Measure B_d - \overline{B}_d mixing phase

$$\phi_{d} = 2\beta$$

in

$$A_{CP}(B_d o J/\psi K_S)(t) = S_{J/\psi K_S} \sin(\Delta m_d t) - C_{J/\psi K_S} \cos(\Delta m_d)$$

with

$$S_{J/\psi K_S} = \sin(2\beta + \Delta \phi_d)$$

$\Delta \phi_d$ due to penguin pollution, which is

- ullet parametrically suppressed by $\epsilon \equiv \left| rac{V_{\it US} \, V_{\it Ub}}{V_{\it CS} \, V_{\it Cb}}
 ight| = 0.02$
- non-perturbative (could still be very large)
- In the past, different estimates for penguin pollution

Overview: Experimental and Theoretical Precision

$$\Delta S_{J/\psi K_S} = S_{J/\psi K_S} - \sin \phi_d$$
 $S_{J/\psi K_S} = \sin (\phi_d + \Delta \phi_d)$

HFAG 2015	$\sigma_{\mathcal{S}_{\!J/\psi\mathcal{K}_{\!S}}}=$ 0.02	$\sigma_{\phi_{ extsf{d}}}=$ 1.5 $^{\circ}$	
Author	$\Delta \mathcal{S}_{J/\psi\mathcal{K}_S}$	$oldsymbol{\Delta}\phi_{oldsymbol{\mathcal{G}}}$	Method
Fleischer 2015	-0.01 ± 0.01	$-1.1^{\circ} \pm 0.7^{\circ}$	SU(3) flavor
Jung 2012	$ \Delta \mathcal{S} \lesssim 0.01$	$ \Delta\phi_{d} \lesssim 0.8^{\circ}$	SU(3) flavor
Boos et al. 2004	$-(2\pm 2)\cdot 10^{-4}$	$0.0^{\circ}\pm0.0^{\circ}$	perturbative

Philipp Frings (KIT) Penguin Pollution 23/07/2015 3/16

Our Idea

What Contributes to the Penguin Pollution p_f ?

Generic B decay amplitude:

$$A(B \rightarrow f) = \lambda_c t_f + \lambda_u p_f$$

Terms $\propto \lambda_u = V_{ub}V_{us}^*$ lead to the penguin pollution $\Delta \phi$.

Top Quark Penguins:

$$p_f \supset \langle f | \sum_{i=3}^6 C_i Q_i | B \rangle$$

Up Quark Penguins

$$p_f \supset \langle f | C_1 Q_1^u + C_2 Q_2^u | B \rangle$$

Figure: Up Quark Penguin

Our Idea - Employ OPE to Describe Up Penguin

We rely on field-theoretic methods only

- ullet Exploit the heaviness of the J/ψ mass $m_\psi=3.1~{
 m GeV}\gg \Lambda_{QCD}$
- Factorization of hard and soft scales
- Large N_C counting

Is this Bander Soni Silverman?

Comparison to literature

Boos, Mannel and Reuther (2004) computed the up-quark loop motivated by Bander Soni Silverman (1979) (BSS).

Our calculation is more:

- Without the field-theoretic proof the validity of BSS is not ensured.
- Reliable estimate of the matrix elements via N_C counting.

Elements of the Proof

Investigate the Infrared Structure - Soft Divergences

Infrared-soft divergent diagrams ...

... factorize.

Other Elements

Collinear divergent diagrams

are infrared-safe if summed over or are infrared-safe if considered in a physical gauge.

Spectator scattering diagrams

are power suppressed.

Effective Description is Possible

Conclusion of the Proof

- Soft divergences factorize
- Collinear divergences cancel or factorize
- Spectator scattering is power-suppressed.

⇒ Up quark penguin can be described by an effective vertex!

Results

Results for B_d Decays

Highlight:

For the decay $B_d \to J/\psi K_S$ we find:

$$|\Delta \phi_d| \leq 0.68^\circ$$

OPE applicable for all $B_q \to {\rm charmonium} + X {\rm decays}$ (X pseudoscalar or vector particle)

Final State f	$J/ψ K_S$	$J/\psi\pi^0$	$(J/\psi ho)^0$	$(J/\psi ho)^\parallel$	$(J/\psi ho)^{\perp}$
$\max(\Delta S_f) [10^{-2}]$	0.86	18	22	27	22
$\max(C_f) [10^{-2}]$	1.33	29	35	41	36

...and more!

13 / 16

CP Violation Observables in $B_d \to J/\psi \pi^0$

Experiment

	$ig \mathcal{S}_{J/\psi\pi^0}$	$C_{J/\psi\pi^0}$
BaBar (Aubert 2008)	-1.23 ± 0.21	-0.20 ± 0.19
Belle (Lee 2007)	-0.65 ± 0.22	-0.08 ± 0.17

Our results:

$$-0.87 \le S_{J/\psi\pi^0} \le -0.51$$

$$-0.29 \le C_{J/\psi\pi^0} \le 0.29$$

ightarrow Belle favored

Results for B_s Decays

$B_s - \bar{B}_s$ mixing phase

Very precisely known in the SM

$$\phi_s = -2\beta_s = (-2.1 \pm 0.1)^\circ$$

Final State f	$J/ψ K_S$	$(J/\psi\phi)^0$	$(J/\psi\phi)^\parallel$	$(\textit{\textbf{J}}/\psi\phi)^{\perp}$
$max(\Delta\phi_{\mathcal{S}})\ [^{\circ}]$	n.a.	0.97	1.22	0.99
$\max(\Delta S_f) [10^{-2}]$	26.	1.70	2.13	1.73
$\max(C_f)[10^{-2}]$	27.	1.89	2.35	1.92

15/16

...and more!

Summary

- OPE gives a limit for the size of the penguin pollution.
- No long-distance enhanced up quark penguins
- ullet Belle's measurement of $S_{J/\psi\pi^0}$ is theoretically favored

Author	$\Delta \mathcal{S}_{J/\psi\mathcal{K}_{\mathcal{S}}}$	$\Delta\phi_{ extsf{d}}$	Method
PF et al.	$ \Delta S < 0.01$	$ \Delta\phi_{\it d} < 0.7^{\circ}$	OPE
Fleischer 2015	-0.01 ± 0.01	$-1.1^{\circ}\pm0.7^{\circ}$	SU(3) flavor
Jung 2012	$ \Delta \mathcal{S} \lesssim 0.01$	$ \Delta\phi_d \lesssim 0.8^\circ$	SU(3) flavor
Boos et al. 2004	$-(2\pm 2)\cdot 10^{-4}$	$0.0^{\circ}\pm0.0^{\circ}$	perturbative

Final State	$(J/\psi\phi)^0$	$(J/\psi\phi)^\parallel$	$(\textbf{\textit{J}}/\psi\phi)^{\perp}$
$\max(\Delta\phi_{\mathcal{S}})$ [°]	0.97	1.22	0.99

16 / 16

Estimates based on Flavor Symmetries

Flavor SU(3)

- relates $u \leftrightarrow d \leftrightarrow s$
- measure penguin pollution in $B_d o J/\psi \pi^0$, use $S_{J/\psi \pi^0}$
- broken by terms $\mathcal{O}\left(m_s/\Lambda_{QCD}\right)$

Drawbacks of flavor symmetries

- breaking hard to quantify
- ullet low statistics in Cabibbo suppressed decays such as $B_d o J/\psi \pi^0$

Philipp Frings (KIT) Penguin Pollution 23/07/2015 17 / 16

Infrared Structure - Collinear Divergences

Collinear divergent diagrams

are infrared-safe if summed over,

or are infrared-safe if considered in a physical gauge.

Investigate the Infrared Structure - Soft Divergences

Infrared-soft divergent diagrams ...

... factorize.

23/07/2015

19/16

Spectator Scattering

... is power suppressed.

Operator Product Expansion in $\frac{1}{q^2}$ is Possible

Only write down operators, that contribute significantly:

$$\mathcal{H}_{ extit{eff}} = \lambda_{ extit{C}} \left(extit{C}_0 extit{Q}_0 + extit{C}_8 (extit{Q}_{8V} - extit{Q}_{8A})
ight) + \lambda_{ extit{U}} (extit{C}_8^{ extit{U}} + extit{C}_8^{ extit{t}}) extit{Q}_{8V} + \mathcal{O} \left(rac{\Lambda_{QCD}^2}{q^2}
ight)$$

- Penguin pollution is dominated by $Q_{8V} = (\bar{b}T^as)_{(V-A)}(\bar{c}T^ac)_V$
- Only few operators contribute

Important operators:

$$\begin{array}{llll} Q_{0V} & \equiv & (\bar{s}b)_{V-A}(\bar{c}c)_{V} & Q_{0A} & \equiv & (\bar{s}b)_{V-A}(\bar{c}c)_{A} \\ Q_{8V} & \equiv & (\bar{s}T^{a}b)_{V-A}(\bar{c}T^{a}c)_{V} & Q_{8A} & \equiv & (\bar{s}T^{a}b)_{V-A}(\bar{c}T^{a}c)_{A} \end{array}$$

Philipp Frings (KIT) Penguin Pollution 23/07/2015 21 / 16

Relevant Matrix Elements

Decay amplitude

$$\lambda_{c}t_{f} + \lambda_{u}p_{f} = \lambda_{c}\langle f|C_{0}Q_{0} + C_{8}(Q_{8V} - Q_{8A})|B\rangle + \lambda_{u}\langle f|(C_{8}^{u} + C_{8}^{t})Q_{8V}|B\rangle$$

Three relevant matrix elements only:

$$V_0 \equiv \langle f|\,Q_0\,|B
angle\,, \qquad V_8 \equiv \langle f|\,Q_{8\,V}\,|B
angle\,, \qquad A_8 \equiv \langle f|\,Q_{8\,A}\,|B
angle\,.$$

Large N_C Counting

For example: $B_d \rightarrow J/\psi K_S$

$$\begin{split} V_0 &= \left\langle J/\psi K_S \right| \left. Q_0 \left| B_d \right\rangle \right. \\ &= 2 \mathit{f}_{\psi} \mathit{m}_B \mathit{p}_{cm} \mathit{F}_1^{\mathit{BK}} \left(1 + \mathcal{O} \left(\frac{1}{N_C^2} \right) \right) \\ V_8 &= \left\langle J/\psi K_S \right| \left. Q_8 \left| B_d \right\rangle \right. \\ &\qquad \sim \mathcal{O} \left(\mathit{N}_C \right) \end{split}$$

Does the $1/N_C$ expansion work?

$$\frac{BR(B_d \to J/\psi K_S)|_{\text{fact.}}}{BR(B_d \to J/\psi K_S)|_{\text{exp.}}} = 0.24 \Rightarrow 0.06 |V_0| \leq |V_8 - A_8| \leq 0.19 |V_0|$$

Parametrization of the penguin pollution

$$\frac{p_f}{t_f} = \frac{(C_8^u + C_8^t)V_8}{C_0V_0 + C_8(V_8 - A_8)}$$

$$an(\Delta\phi) pprox 2\epsilon \sin(\gamma) ext{Re}\left(rac{p_f}{t_f}
ight) \qquad \qquad \epsilon \equiv \left|rac{V_{us}\,V_{ub}}{V_{cs}\,V_{cb}}
ight|$$

Scan for largest value of $\Delta \phi$ for:

$$V_0 = 2 f_{\psi} m_B p_{cm} F_1^{BK}$$
 $0 \le |V_8| \le V_0/3$
 $0 \le \arg(V_8) < 2\pi$
 $0 \le |A_8| \le V_0/3$
 $0 \le \arg(A_8) < 2\pi$