

Universität Hamburg

top/bottom partners and new phenomena with top/bottom pairs in ATLAS and CMS

Ivan Marchesini, EPS-HEP 2015, Vienna on behalf of the ATLAS and CMS collaborations

Introduction

- Many theories predict a special role of the top quark and new particles coupling preferentially to the third generation:
 - → e.g. cure the little Hierarchy problem, additional loops
- Focus on non-Susy searches with third generation quarks:
 - → challenging final states: cutting edge reconstruction tools

E. Salvioni, MC4BSM, 2015

From F. Blekman's talk, HCP, 2013

- Areas covered:
- → vector-like quarks: typically predicted to be < 2 TeV (fine-tuning solution/naturalness arguments)
 - heavy resonances: new LHC energy opens up larger mass regions
 - **Z'**→tt
 - **W'**→tb

Boosted regime

[ATLAS: JHEP 1309 (2013) 076, CMS: arXiv:1506.03062]

Classical selection methods fail:

- →non-isolated leptons
- →hadronic decay products from heavy particles merged into large fat-jets
- **Leptons**: simple cone isolation fails, e.g. exploit p₋,rel observable

- **Jet mass**: fundamental observable to identify merged jets
 - → grooming (pruning, trimming, filtering, ...): remove soft/large angle radiation, protect from pile-up

Sophisticated tools (back-up):

top-tagging, subjet b-tagging,

n-subjettiness, W-tagging

200

1.25

Data / MC

100

160 180

Jet Mass [GeV]

Vector-like quarks

Vector-like quarks

- Why?
 - → naturally solve the hierarchy problem and are predicted by several theories (little Higgs models, composite Higgs models, extra dimensions)
 - → modest impact on SM Higgs production and decay modes: not ruled out
- Run 1 focus on pair-production
 - → driven only by QCD: model independent

- Single-production:
 - → dominant for large VLQ masses: focus in Run II
 - → model dependent
- Focus on third generation couplings: coupling to light quarks possible, but heavily constrained

$$T(+2/3)$$
 W^+b , Ht , Zt $B(-1/3)$ W^-t , Hb , Zb this talk

$$X(+5/3) W+t$$

$$Y(-4/3)$$
 $W^{-} b$

TT searches at CMS

[B2G-12-013, Phys. Lett. B 729 (2014) 149, B2G-12-017, JHEP 06 (2015) 080, B2G-14-003]

- > Single lepton, TT→bWbW→μ+ν+4jets, e+ν+4jets:
 - → W-tagging for boosted W hadronic decays
 - → Kinematic fit to reconstruct T mass:

$$m(lep \ v) = M_{_W}$$
 $m(qq) = M_{_W}$
 $m(lep \ v \ b) = m \ (qqb)$

→ bW decay mode, obs (exp) limit: 912 (851) GeV

- → likelihood of two observables: H_T and M_{higgs}
- → substructure allows similar sensitivity as leptonic signatures: mass limit of 745 (773) GeV, for 100% BR

CMS strategy: explore and optimize for all final states. Searches not shown: inclusive with leptons, hadronic with substructure targeting bW decays, tH decays with $H \rightarrow \gamma\gamma$

BB searches at CMS

[B2G-13-006, on arXiv soon]

Same-sign di-lepton:

- → lepton pairs from different combinations:
 BB→tWtW, BB→bHtW, BB→bHbH, H→WW
- → 4 jets and $S_T > 200$ GeV, $E_T^{miss} > 30$ GeV, with: $S_T = \Sigma p_T(jets) + p_T(leptons) + E_T^{miss}$
- → control regions for fake leptons backgrounds: relaxed isolation criteria
- → tW decay mode: obs (exp) limit of 798 (800) GeV
- **►** Hadronic with substructure: BB→bHbH, H→bb
 - → strong Higgs-tagging: subjet b-tagging + n-subjettiness
 - driving sensitivity to bH decays, where leptonic seaches are weak. Obs (exp) limit: 846 (811) GeV
- Combination of all searches shown for the first time. Also including three searches not shown:
 - → single lepton with boosted V-tagging (V=H/Z/W)
 - → di-lepton, reconstruct mass B from Z(→/*/)+b-jet
 - → multi-lepton, with several exclusive channels

VLQ searches at ATLAS

[arXiv:1505.04306]

TT→ Wb + X

- → single lepton (e, μ) , ≥1 b-tag, ≥4 jets
- → $m_T(W) + E_T^{miss} > 60 \text{ GeV}, E_T^{miss} > 20 \text{ GeV}$
- → hadronic W: boosted (p_T>400 GeV) + resolved (single jets with small angle)
- → m_{reco} (T) from hadronic W + b-jet
- → bW decay mode, obs (exp) limit: 760 (800) GeV

TT→ tH + X and BB→bH + X

- → large jet and b-jet multiplicity
- → event categories: n jets (5, ≥6)/n b-tags(2, 3, ≥4)
- → Higgs-candidate from b-jets with min ∞R
- \rightarrow two channels based on $\mathbf{m}_{bb}^{\min\Delta R}$ (> or < 100 GeV)
- → limits from $\mathbf{H}_{\mathsf{T}} = \sum p_{\mathsf{T}}(\text{jets}) + p_{\mathsf{T}}(\text{leptons}) + E_{\mathsf{T}}^{\text{miss}}$
- → BB→bH + X: same analysis, only minor change on p_T leading b-jets (more boosted)
- → mass limit of 950 (885) GeV, for 100% BR T→tH

> ATLAS strategy: inclusive, signature-based searches

VLQ searches at ATLAS

[Phys. Rev. D 91, 112011 (2015), JHEP 11 (2014) 104, arXiv:1504.04605]

Multi-variate, single lepton, BB→tW + X

- → 1 lepton (e, μ), E_{τ}^{miss} , jets
- → categories: N jets, N hadronic W/Z, N b-jets, H₊
- → **BDT** with 12 variables, most discriminating:
 - H_T , ΔR (lep, b-jet 1), M_T (W lep)
- → BDT cross-checked with cut-based analysis
- → bW decay mode, obs (exp) limit: 810 (760) GeV

Multi-lepton analysis

- → targets also single VLQ production: forward jet requirement
- → di-lepton: targets Z decays, T→Zt, B→Zb, observable m(Zb)
- → tri-lepton: targets multi-boson final states (W, Z, H), observable H_T
- Same-sign di-lepton + b-jets: cut and count experiment, event categories based on H_{τ} , N b-jets, E_{τ}^{miss} . ~2 σ eccess in categories with large H_{τ}

Summary of Run 1

[ATLAS: arXiv:1505.04306, CMS: B2G-13-006 (arXiv soon), B2G-12-013, Phys. Lett. B 729 (2014) 149, B2G-12-017, JHEP 06 (2015) 080, B2G-14-003]

ATLAS:

expected: 715-885 GeV observed: 730-950 GeV

CMS	exp (GeV)	obs (GeV)
bW	851	912
tH	773	745
tZ	813	782

ATLAS:

expected: 615-800 GeV observed: 575-813 GeV

CMS	exp (GeV)	obs (GeV)
tW	890	880
bH	810	900
bZ	740	750

- ATLAS. Plots contain individual limits from most restrictive searches
- CMS. B: combination. T: combination of searches published soon, here shown: tighter limit for bW corner

tt and tb resonances

Introduction

W'→tb resonances:

- → another way to cancel fine-tuning
- → signal modeling:

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \overline{f}_i \gamma_\mu \left(a_{f_i f_j}^{\mathrm{R}} (1 + \gamma^5) + a_{f_i f_j}^{\mathrm{L}} (1 - \gamma^5) \right) W'^\mu f_j + \mathrm{h.c.}$$

ttbar resonances:

- → appear as a deviation from the SM in M_# spectrum
- → predicted by several models, searches can be interpreted in any of these:
 - extended gauge sectors
 - top-colour condensates
 - warped extra dimensions
 - Kaluza-Klein excitations

W' resonances at CMS

[JHEP 05 (2014) 108, B2G-12-009]

Lepton+jets:

- \rightarrow resolved: single lepton (e, μ), 2 jets, 1 b-tag
- → W' candidate from top candidate and leading jet
- Boosted all hadronic:

- → b-candidate: b-tag + mass < 70 GeV</p>
- → top-decay: CMSTopTagger+ n-subjettiness+ subjet b-tagging
- → substructure: similar sensitivity as cleaner semi-leptonic final state
- W'_R mass limit of 2.15 TeV. Limits provided also for mixed couplings

W' resonances at ATLAS

[Eur. Phys. J. C (2015) 75:165, Physics Letters B 743 (2015) 235-255]

All hadronic:

- → **substructure**: 1 top-tagged jet
- → 1 or 2 b-tags, the second close to the top-tagged jet: accounts for b coming from the top decay

Lepton+jets:

- \rightarrow 1 lepton (e, μ), 2 or 3 jets, 2 b-tags
- $\rightarrow m_{T}(W) + E_{T}^{miss} > 60 \text{ GeV}$
- object assignment to reconstruct W' and top candidates
- → BDT of several variables, most discriminating:
 - mass_w
 - mass_{top}
- W'_R mass limit of 1.92 TeV
- Different way to express limits for other couplings: $g'_{L/R}/g$ vs $m(W'_{L/R})$, where g is the SM SU(2), coupling

ttbar resonances at CMS

[arXiv:1506.03062]

Resolved

- → conventional analysis: 4 jets, 1 b-tag, isolated lepton (μ or e), E_T^{miss}
 - → ttbar system reconstructed from χ^2 assignment

Di-leptonic

- \rightarrow two (non-)isolated leptons (ee, $\mu\mu$, e μ), 1 or 2 b-tags
- → background region: ΔR_{min}(lept 2, jet) > 1.5

Semi-leptonic:

- \rightarrow leptonic decay: (non-)isolated lepton, e or μ
- → hadronic decay:
 - boosted: events with 1 CMS-top-tag
 - χ^2 assignment for (partially) resolved decays

Full hadronic:

- → large use of substructure:
 - HepTopTagger (200-400 GeV) and CMSTopTagger (>400 GeV)
 - n-subjettiness + subjet b-tagging
- → pure, QCD-depleted signal regions

ttbar resonances at ATLAS

[arXiv:1505.07018]

- New ATLAS semi-leptonic analysis
 - → both boosted and resolved topologies
- Lepton (e or μ) isolation cone: ΔR < 10 GeV / E_τ
 - → increases acceptance in the boosted regime
- **Resolved** selection:
 - → multiple small jets and χ^2 assignment
- Boosted selection:
 - → one large jet, pT > 300 (e)/380 (μ) GeV
 - → m_{iet} > 100 GeV + substructure
- 12 event categories:
 - → b-tag: leptonic side/hadronic side/both
 - → resolved/boosted
 - → lepton flavor

ttbar resonances: limits

[CMS: arXiv:1506.03062, ATLAS: arXiv:1505.07018]

- CMS: different channels contribute to sensitivity in different mass regions
- Mass exclusions depend on the considered model. E.g. for a Kaluza-Klein gluon:
 - → CMS excludes masses < 2.8 TeV
 - → ATLAS excludes masses < 2.2 TeV</p>

Run 2 outlook

- Experimental challenges:
 - → efforts to further optimize analysis tools, such as substructure
 - triggers targeting single VLQ searches including substructure
- Rich phenomenology, will further expand in Run 2: single VLQ, Z'→Tt
- Single VLQ-model dependence: communication theory/ATLAS/CMS, to identify benchmarks and help future interpretations of the results. E.g. effective operators approach:

CMS Experiment at LHC, CERN Data recorded: Sun Jul 12 07:25:11 2015 CEST Run/Event: 251562 / 111132974 Lumi section: 122 Orbit/Crossing: 31722792 / 2253

Additional Slides

Vector-like quarks

- Vector-like heavy quarks:
 - → spin 1/2, colored
 - \rightarrow left and right components transform in the same way under $SU(3)_c \times SU(2)_L \times U(1)_{\gamma}$
- Why are they called "vector"-like?

$$j_L^\mu = \overline{f}_L \gamma^\mu f_L' \qquad j_R^\mu = 0$$

$$j^\mu = j_L^\mu + j_R^\mu = \overline{f} \gamma^\mu (1 - \gamma^5) f'$$

$$\frac{V - A}{V}$$

$$j_L^{\mu} = \overline{f}_L \gamma^{\mu} f_L' \qquad j_R^{\mu} = \overline{f}_R \gamma^{\mu} f_R'$$
 $j^{\mu} = j_L^{\mu} + j_R^{\mu} = \overline{f} \gamma^{\mu} f'$
 V

SM chiral quarks

VLQs

Mass term independent from symmetry breaking mechanism:

$$L_{mass} = -M(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)$$

- > Appealing:
 - → naturally solve the hierarchy problem and are predicted by several theories (little Higgs models, composite Higgs models, extra dimensions)
 - → modest impact on SM Higgs production and decay modes, not ruled out

Substructure tools

[ATLAS: ATLAS-CONF-2014-003, CMS: CMS DP-2014/031]

Top/Higgs/W/Z-tagging:

- → jets mass + substructure requirements (2 or 3-body structure of the fat-jet)
- → sophisticated top-tagging algorithms: HepTopTagger, CMSTopTagger
- → large optimization efforts in both collaborations, several tools tested:
 - n-subjettiness
 - shower deconstruction
 - ...

Boosted b-tagging:

- → largely orthogonal from substructure
- → b-tagging sequence applied to individual subjets (CMS) or smaller-size track jets (ATLAS)
- → combined to top-tagging: up to factor 10 gain in QCD rejection, keeping 70% efficiency

Run 1 subjet b-tagging

Run 2 subjet b-tagging

Summary of Run 1: TT

[ATLAS: arXiv:1505.04306, CMS: B2G-12-013, Phys. Lett. B 729 (2014) 149, B2G-12-017, JHEP 06 (2015) 080, B2G-14-003]

- ATLAS: plot contains individual limits from most restrictive searches
- CMS: combination of searches published soon. Shown: tighter limit for bW corner and inclusive analysis

Summary of Run 1: BB

[ATLAS: arXiv:1505.04306, CMS: B2G-13-006 (on arXiv soon)]

ATLAS: plot contains individual limits from most restrictive searches

CMS: combination of searches