

EPS-HEP 2015 Vienna, Austria

Thermal Transport of the Solar Captured Dark Matter and its Impact on the Indirect Dark Matter Search

Yen-Hsun Lin

Nat'l Chiao Tung Univ., Taiwan

in collaboration with

C.-S. Chen and G.-L. Lin

Outline

- * Motivations
- * How does thermal energy transport?
- * Dark matter (DM) evolution and thermal transport
- Physical implications and its impact on indirect search
- Summary

Motivations

- Recent studies suggest that DM is not collisionless
- * The DM temperature, T_{χ} , is not necessarily to be the same as the core temperature of the Sun, T_c
- * Thermal energy can exchange between DM-DM and DM-nucleus or even dissipates through annihilation
- * For much weaker $\sigma_{\chi p}$, the thermal energy exchange between DM-nucleus is less efficient
- * In such case, T_{χ} can be distinct from T_c eventually
- * As a consequence, it may alter the DM annihilation rate

How does thermal energy transport?

Energy flow via capture

The capture could be due to scattering with *nucleus* or *DM themselves*

DM

u: DM velocity in the halo *w*(*r*): DM velocity when
arrives at layer *r* in the Sun

DM kinetics after scattering

- * When DM reaches layer *r* in the Sun, it carries velocity $w = \sqrt{u^2 + v_{\text{esc}}^2(r)}$
- Thus, the average DM kinetic energy after scattering with nucleus is given by

$$\bar{E}_K(r) = \frac{m_{\chi}}{4} \left(\frac{m_{\chi} - m_A}{m_{\chi} + m_A}\right)^2 u^2 + \frac{m_{\chi}}{2} \frac{m_{\chi}^2 + m_A^2}{(m_{\chi} + m_A)^2} v_{\rm esc}^2(r)$$

* However, the scattering among DM themselves gives

$$\bar{E}_K(r) = \frac{1}{4}m_\chi v_{\rm esc}^2(r)$$

* m_A is the nucleus mass of element A in the Sun

Energy flow via thermal contact

Thermal contact via *DM and nucleus A*

Thermal contact via DM *themselves*

[1] D. N. Spergel and W. H. Press, Astrophys. J. 294, 663 (1985)

Mean collision time

- * The mean collision time is used to determine which one reaches thermal equilibrium earlier, DM-DM or DM-nucleus
- * Thereupon, by $\tau \sim 1/(n\sigma v)$ we have

$$\begin{cases} \tau_{\chi\chi}(t) \simeq \frac{V_{\odot}}{N_{\chi}(t)\sigma_{\chi\chi}v}, & \text{for DM-DM} \\ \tau_{\chi\odot} \simeq \frac{V_{\odot}}{\sum_{i}N_{i}\sigma_{\chi A_{i}}v}, & \text{for DM-nucleus} \end{cases}$$

* Suppose the time scale for DM to reach thermal equilibrium is $t = \tau_{\chi}^{eq}$, we have

$$\tau_{\chi}^{\mathrm{eq}} \simeq \tau_{\chi\chi}(\tau_{\chi}^{\mathrm{eq}}) = \frac{V_{\odot}}{N_{\chi}(\tau_{\chi}^{\mathrm{eq}})\sigma_{\chi\chi}v}$$

Thermal equilibrium time scale

- * Assuming when DM reaches its own thermal equilibrium, N_{χ} is still its early stage of accumulation
- * In other words, the capture by DM-nucleus scattering is dominant, $N_{\chi} \approx C_c t$
- * By such assumption, we can define the ratio *r*

$$r \equiv \frac{\tau_{\chi}^{\rm eq}}{\tau_{\chi\odot}} \simeq 10^9 \sqrt{\frac{\sigma_{\chi p}}{\sigma_{\chi\chi}}}$$

- For *r* < 1, DMs will reach their own thermal equilibrium quicker than with the solar medium
- * Thus it is sufficient to just consider the thermal contact between DM and nucleus after $t = \tau_{\chi}^{eq}$

Energy dissipation via annihilation

Annihilation takes DM away and transports them into the final SM products

Defining physical quantities

DM evolution process and thermal exchange

DM evolution in the Sun

* The common DM evolution equation:

$$\frac{dN_{\chi}}{dt} = C_c + C_s N_{\chi} - C_a N_{\chi}^2$$

* Additionally, N_{χ} contributes to the total energy evolving as well. Thus, we have the energy evolution equation:

$$\frac{d(N_{\chi}\bar{E})}{dt} = J_c + (J_{\chi} + J_s)N_{\chi} - J_a N_{\chi}^2$$

$$\bar{E} = \frac{s}{2} k_B T_{\chi}(t)$$

* $T_{\chi}(t)$ is the average DM temperature and *s* denotes the d.o.f. of DM. We take *s* = 3 for subsequent discussions

T_{χ} -dependent quantity in dN_{χ}/dt

* The two differential equations are mutual dependent since C_a is T_{χ} -dependent^[2]

$$C_a = \frac{\langle \sigma v \rangle V_2}{V_1^2} \qquad V_j \propto \left(\frac{T_{\chi}}{T_c} \frac{10 \text{ GeV}}{jm_{\chi}}\right)^{3/2} \quad j = 1, 2$$

- * How T_{χ} evolving will affect N_{χ} accumulation and then feedback to T_{χ} itself
- * The factors $J_{c,s,\chi,a}$ are all T_{χ} -dependent

Physical implications

N_{χ} and T_{χ} evolutions: Stronger $\sigma_{\chi p}$

- * $r \sim 0.01$ for $(\sigma_{\chi p}, \sigma_{\chi \chi}) = (10^{-45}, 10^{-23})$ cm²
- * Although J_c and $J_s N_{\chi}$ transport energy into the DM reservoir, the thermal contact $J_{\chi}N_{\chi}$ makes the heat out of the reservoir due to larger $\sigma_{\chi p}$ as well as the $J_a N_{\chi}^2$
- * Eventually T_{χ} will be balanced by the Sun with the core temperature T_c

N_{χ} and T_{χ} evolutions: Weaker $\sigma_{\chi p}$

- * $r \sim 10^{-4}$ for $(\sigma_{\chi p}, \sigma_{\chi \chi}) = (10^{-47}, 10^{-23})$ cm²
- In such case, the energy injection
 via J_c and J_s can overcome the
 dissipation due to J_χ and J_a
- Moreover, energy injects to the DM reservoir constantly and makes them form their own thermal system
- * The T_{χ} is distinct from T_c in this case

The total annihilation rate Γ_A

- * The total annihilation rate $\Gamma_A = \frac{1}{2} C_a N_{\chi}^2$
- * Since $C_a \propto T_{\chi}^{-1.5}$, larger T_{χ} makes smaller C_a .
- * However, smaller C_a leads to more N_{χ} accumulation once $dN_{\chi}/dt = 0$ is attained^[3]
- * When N_{χ^2} increment can overcome the C_a suppression, we have larger Γ_A compares to those without temperature correction
- * For some cases, $dN_{\chi}/dt = 0$ does not attain at current epoch. It makes the corresponding Γ_A smaller than those without temperature correction

[3] C.-S. Chen et al., JCAP 10, 049 (2014)

Summary

To summarize so far...

- The DM temperature does not necessarily equal to the Sun's core temperature for collisional DM
- * As a consequence of $\tau_{\chi}^{eq} < \tau_{\chi\odot}$, DM reaches thermal equilibrium before it starts thermal exchange with the solar nucleus efficiently
- * If $\sigma_{\chi p}$ is small enough, eventually DM will have its own temperature inside the Sun regardless of T_c
- * For more accurate prediction on the DM signal, the temperature correction factor should be considered