
Yen-Hsun Lin
Nat’l Chiao Tung Univ., Taiwan

in collaboration with
C.-S. Chen and G.-L. Lin
Outline

❖ Motivations
❖ How does thermal energy transport?
❖ Dark matter (DM) evolution and thermal transport
❖ Physical implications and its impact on indirect search
❖ Summary
Motivations

- Recent studies suggest that DM is not collisionless
- The DM temperature, T_χ, is not necessarily to be the same as the core temperature of the Sun, T_c
- Thermal energy can exchange between DM-DM and DM-nucleus or even dissipates through annihilation
- For much weaker $\sigma_{\chi p}$, the thermal energy exchange between DM-nucleus is less efficient
- In such case, T_χ can be distinct from T_c eventually
- As a consequence, it may alter the DM annihilation rate
How does thermal energy transport?
Energy flow via capture

The capture could be due to scattering with nucleus or DM themselves

u: DM velocity in the halo
$w(r)$: DM velocity when arrives at layer r in the Sun
DM kinetics after scattering

- When DM reaches layer r in the Sun, it carries velocity

$$w = \sqrt{u^2 + v_{\text{esc}}^2(r)}$$

- Thus, the average DM kinetic energy after scattering with nucleus is given by

$$\bar{E}_K(r) = \frac{m_\chi}{4} \left(\frac{m_\chi - m_A}{m_\chi + m_A} \right)^2 u^2 + \frac{m_\chi}{2} \frac{m_\chi^2 + m_A^2}{(m_\chi + m_A)^2} v_{\text{esc}}^2(r)$$

- However, the scattering among DM themselves gives

$$\bar{E}_K(r) = \frac{1}{4} m_\chi v_{\text{esc}}^2(r)$$

- m_A is the nucleus mass of element A in the Sun
Energy flow via thermal contact

$T_x > T_A$
Heat flow

$T_x < T'_x$
Heat flow

Thermal contact via DM and nucleus A

Thermal contact via DM themselves

Mean collision time

- The mean collision time is used to determine which one reaches thermal equilibrium earlier, DM-DM or DM-nucleus.

- Thereupon, by $\tau \sim 1 / (n \sigma v)$ we have:

$$
\begin{align*}
\tau_{\chi \chi}(t) & \simeq \frac{V_\odot}{N_\chi(t) \sigma_{\chi \chi} v}, \quad \text{for DM-DM} \\
\tau_{\chi \odot} & \simeq \frac{V_\odot}{\sum_i N_i \sigma_{\chi A_i} v}, \quad \text{for DM-nucleus}
\end{align*}
$$

- Suppose the time scale for DM to reach thermal equilibrium is $t = \tau_{\chi}^{\text{eq}}$, we have:

$$
\tau_{\chi}^{\text{eq}} \simeq \tau_{\chi \chi}(\tau_{\chi}^{\text{eq}}) = \frac{V_\odot}{N_\chi(\tau_{\chi}^{\text{eq}}) \sigma_{\chi \chi} v}
$$
Thermal equilibrium time scale

- Assuming when DM reaches its own thermal equilibrium, N_χ is still its early stage of accumulation.
- In other words, the capture by DM-nucleus scattering is dominant, $N_\chi \approx C_c t$.
- By such assumption, we can define the ratio r

$$r \equiv \frac{\tau_\chi^{eq}}{\tau_\chi^\odot} \approx 10^9 \sqrt{\frac{\sigma_{xp}}{\sigma_{xx}}}$$

- For $r < 1$, DMs will reach their own thermal equilibrium quicker than with the solar medium.
- Thus it is sufficient to just consider the thermal contact between DM and nucleus after $t = \tau_\chi^{eq}$.
Energy dissipation via annihilation

Annihilation takes DM away and transports them into the final SM products.
Defining physical quantities

Energy injections due to gravitational capture and self-capture

Energy dissipation due to annihilation

Heat bath

DM reservoir N_x

Thermal contact between DM-nucleus

J_c & J_s

J_x
DM evolution process and thermal exchange
DM evolution in the Sun

- The common DM evolution equation:
 \[
 \frac{dN_\chi}{dt} = C_c + C_s N_\chi - C_a N_\chi^2
 \]

- Additionally, \(N_\chi \) contributes to the total energy evolving as well. Thus, we have the energy evolution equation:
 \[
 \frac{d(N_\chi \bar{E})}{dt} = J_c + (J_\chi + J_s)N_\chi - J_a N_\chi^2
 \]
 \[
 \bar{E} = \frac{s}{2} k_B T_\chi(t)
 \]

- \(T_\chi(t) \) is the average DM temperature and \(s \) denotes the d.o.f. of DM. We take \(s = 3 \) for subsequent discussions.
T_χ-dependent quantity in dN_χ/dt

- The two differential equations are mutual dependent since C_a is T_χ-dependent\(^2\)

\[
C_a = \frac{\langle \sigma v \rangle V_2}{V_1^2} \quad \quad V_j \propto \left(\frac{T_\chi}{T_c} \frac{10 \text{ GeV}}{j m_\chi} \right)^{3/2} \quad j = 1, 2
\]

- How T_χ evolving will affect N_χ accumulation and then feedback to T_χ itself

- The factors $J_{c,s,\chi,a}$ are all T_χ-dependent

Physical implications
\(N_\chi\) and \(T_\chi\) evolutions: Stronger \(\sigma_{\chi p}\)

- \(r \sim 0.01\) for \((\sigma_{\chi p}, \sigma_{\chi \chi}) = (10^{-45}, 10^{-23})\) cm\(^2\)
- Although \(J_c\) and \(J_s N_\chi\) transport energy into the DM reservoir, the thermal contact \(J_\chi N_\chi\) makes the heat out of the reservoir due to larger \(\sigma_{\chi p}\) as well as the \(J_a N_\chi^2\)
- Eventually \(T_\chi\) will be balanced by the Sun with the core temperature \(T_c\)
N_χ and T_χ evolutions: Weaker $\sigma_{\chi p}$

- $r \sim 10^{-4}$ for $(\sigma_{\chi p}, \sigma_{\chi\chi}) = (10^{-47}, 10^{-23})$ cm2
- In such case, the energy injection via J_c and J_s can overcome the dissipation due to J_χ and J_a
- Moreover, energy injects to the DM reservoir constantly and makes them form their own thermal system
- The T_χ is distinct from T_c in this case
The total annihilation rate Γ_A

- The total annihilation rate
 \[\Gamma_A = \frac{1}{2} C_a N^2 \]
- Since $C_a \propto T_\chi^{-1.5}$, larger T_χ makes smaller C_a.
- However, smaller C_a leads to more N_χ accumulation once $dN_\chi/dt = 0$ is attained\[^{[3]}\]
- When N_χ^2 increment can overcome the C_a suppression, we have larger Γ_A compared to those without temperature correction.
- For some cases, $dN_\chi/dt = 0$ does not attain at current epoch. It makes the corresponding Γ_A smaller than those without temperature correction.

\[^{[3]}\] C.-S. Chen et al., JCAP 10, 049 (2014)
Summary
To summarize so far...

- The DM temperature does not necessarily equal to the Sun’s core temperature for collisional DM.
- As a consequence of $\tau^{\text{eq}}_{\chi} < \tau^{\odot}_{\chi}$, DM reaches thermal equilibrium before it starts thermal exchange with the solar nucleus efficiently.
- If $\sigma_{\chi p}$ is small enough, eventually DM will have its own temperature inside the Sun regardless of T_c.
- For more accurate prediction on the DM signal, the temperature correction factor should be considered.