EPS Conference on High Energy Physics Vienna, July 23, 2015

Z production and asymmetry at the Tevatron

- Z production kinematics
 - DØ dimuon $d\sigma/d\phi^*$ (10.4 fb⁻¹)
- ► Z decay (forward backward asymmetry \rightarrow sin² θ_w)
 - DØ dielectron (9.7 fb⁻¹)
 - CDF dimuon (9.2 fb⁻¹)
 - Indirect M_w measurement
- Summary

Motivation

- ▶ Drell/Yan production at the Tevatron: $p\overline{p} \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$
- ► Measure production kinematics $d\sigma_7/dp_T$
 - Sensitive to initial state radiation
 - Important background for searches
- ightharpoonup Measure decay properties A_{FB} and $sin^2\theta_w$
 - Try to disentangle LEP/SLD tension
 - $A_{FB}^{Ob}(LEP) \rightarrow 0.23221 \pm 0.00029$
 - $A_{\ell}(SLD) \rightarrow 0.23098 \pm 0.00026 (3.2\sigma \text{ away})$
 - Indirect measurement of W mass
- Tevatron measurement is complementary to LHC
 - Z mainly produced by valence quark annihilation
 - CP symmetric collider is ideal for asymmetry measurements

DØ μμ kinematic distributions 10.4 fb⁻¹

- ► Measurements of $d\sigma/dp_{T}$ are limited by experimental resolution on $p_{T}(Z)$
- Introduce new variable φ*
 - Determined only from angles (good resolution)
 - Highly correlated with $a_T/M_{\ell\ell}$
 - Less correlated to lepton isolation than p_T
- ► Split analysis by rapidity and M_n regions:
 - 30<M_{...}<60 GeV: sensitive to small-x effects</p>
 - 74k events (90% signal)
 - 70<M_{...}<110 GeV: peak region</p>
 - 645k events (99.84% signal)
 - 160<M_{uu}<500 GeV: constrain ISR unc.</p>
 - 2k events (<70% signal)
- Correction factors in each φ* bin to go to particle level after FSR

$$\phi^* = \tan\left(\frac{\phi_{\text{acop}}}{2}\right) \sin\theta_{\eta}^*$$

$$cos\theta_{\eta}^* = tanh\left(\frac{\eta^- - \eta^+}{2}\right)$$

Vesterinen, Wyatt, NIM A 602, 432 (2009) Banfi et al., EPJ C 71, 1600 (2011)

Distributions at the Z peak

Distributions low mass region

High φ* disagreement: known RESBOS absence of the NNLO correction factor for

the photon exchange diagram. Arán García-Bellido Z pi

Z production and decay at the Tevatron

Distributions high-mass region

DØ kinematic distributions

- Calculate ratio of (1/σ)(dσ/dφ*) between central and forward rapidity regions
 - Reduce uncertainties from QCD scales to percent level
 - Suggests new variable less sensitive to theoretical uncertainty

- In summary:
 - Unprecedented precision in the peak region (645k events): tuned RESBOS in excellent agreement
 - Low-mass region (74k events) agrees reasonably well with RESBOS
 - High-mass region (2k events) seems ok, but limited statistics

Measuring sin²θ_w

- Measure the weak mixing angle from the forward-backward asymmetry of the polar angle distribution in Z/y* lepton pairs
- Dilepton frame (Collins-Soper): θ^* polar angle of the ℓ with the incoming quark
- ► At Born level: $\frac{d\sigma}{dcos\theta^*} \propto 1 + cos^2\theta^* + A_4cos\theta^*$

• When
$$p_T(Z) \rightarrow 0$$
 $A_{FB} \equiv \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{3}{8}A_4$

- ► A₄ term is parity violating from interference of vector and axial currents
- ightharpoonup Measure A_{FB} in bins of $M_{\ell\ell}$
- Produce MC templates for A_{FB} , M_{II} , $\sin^2\theta_{W}$
- Extract $sin^2θ_w$ by a $χ^2$ comparison between data and MC

Forward: $\cos \theta^* > 0$ Backward: $\cos \theta^* < 0$

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$

DØ sin²θ_w from dielectrons in 9.7 fb⁻¹

- Require two electrons with p_⊤>25 GeV
 - Tight track match requirement
 - CC ($|\eta|$ <1.1) and EC (1.5< $|\eta|$ <3.2)
- ► Use $75 < M_{ee} < 115 \text{ GeV} \rightarrow 560 \text{k events}$
- New method for energy calibration
 - Apply scale factor as a function of L_{inst} first and then η
 - M_{ee} peak scaled to LEP value in each bin
 - Separate calibrations for data and MC

Arán García-Bellido

Z production and decay at the Tevatron

DØ sin²θ_w dielectron analysis

- Corrections are applied to MC to account for:
 - Smearing of electron energy
 - **Efficiency corrections in p_{\tau}(e), η(e)**
 - ightharpoonup L_{inst} and z_{PV} reweighting to match data
 - \blacksquare Higher order effects: NNLO Z $p_{\scriptscriptstyle T}$ and y to match RESBOS
- Produce 2D templates of M_{ee} and cosθ* by reweighing default MC (sin²θ_w=0.232) as a function of sin²θ_w
- Extract $\sin^2\theta_w$ by fitting raw A_{FB} to templates with different $\sin^2\theta_w$ values
- No unfolding: MC is carefully corrected to describe the data

DØ sin²θ_w dielectron results 9.7 fb⁻¹

 $\sin^2\theta_w = 0.23139 \pm 0.00043(stat) \pm 0.00008(syst) \pm 0.00017(PDF)$

Transform to sin²θ^ℓ_{eff} by comparing Pythia and RESBOS (with enhanced Born approximation corrections):

 $\sin^2\theta_{eff}^{\ell} = 0.23146 \pm 0.00047$

arXiv:1408.5016 Accepted by PRL

CDF sin²θ_w from dimuons in 9.2 fb⁻¹

- ► Tight muon cuts: p_T>20 GeV
- Dimuon pairs ($|η_1| < 1$, $|η_2| < 1.5$)
 - All dimuon detector topologies
 - |y| < 1; $M_{\mu\mu} > 40$ GeV
- 276k events
- $ho_{T}(\mu)$ calibration (Rochester method)

Tune data and simulation to post-FSR generator level in 64 individually calibrated n. o bins

cos ϑ

CDF angular event weighting

- Extract $A_4(M_Z)$ in bins of cosθ* and average the results
 - Assume $(εA)^- = (εA)^+$ in each bin
- Recast binned measurement into unbinned weighted event sum
 - Weights depend on M_{μ} , $p_{\tau}(\ell\ell)$, $\cos\theta^*$, ϕ^*
- All acc. and effs. cancel to first order
- Equivalent to ML fit, improves the statistical precision up to 20%
- Does not take into account:
 - Smearing due to detector resolution
 - 2^{nd} order bias due to low acceptance regions and non-uniformity: $(\varepsilon A)^{-} \neq (\varepsilon A)^{+}$

$$rac{d\sigma}{cos heta^*}\propto 1+cos^2 heta^*+ \ rac{A_0}{2}(1-3cos^2 heta^*)+A_4cos heta^* \
ho_0$$
 = 0 for $ho_T(Z) o 0$

A. Bodek, EPJ. C67, 321 (2010)

CDF unfolding

- Angular event weighting provides first order acceptance correction
- Use unfolding to correct for resolution and QED FSR:
 - Two 16x16 unfolding matrices (16 mass bins, +, regions)
- Bin-by-bin second order bias correction:
 - Additive factor (True-Estimated) to unfolded A_{FR} in M bins

Arán García-Bellido

Z production and decay at the Tevatron

CDF dimuon sin²θ_w results

- **Perform** χ^2 fit based on RESBOS templates with different sin²θ_w
 - Full ZFITTER EW radiative corrections, Enhanced Born Approximation
 - Include full complex form factors (also compared to POWHEG, LO)

 $\sin^2\theta_{eff}^{\ell}$ = 0.23150 ± 0.00090(stat) ± 0.00011(sys) ± 0.00036(PDF)

► On-shell renormalization scheme, $sin^2\theta_w \equiv 1-(M_w^2/M_z^2)$ to all orders

 $\sin^2\theta_{\rm W} = 0.2233 \pm 0.0008 \pm 0.0004$

Phys. Rev. D 89, 072005 (2014)

CDF indirect M_W measurement ► M_w measured at the Tevatron directly: M_w=80.385±0.015 GeV

- **b** By measuring the on-shell $\sin^2\theta_w$ we obtain an indirect measurement of M_w : M_w (indirect) = 80.365 ± 0.047 GeV
 - Using $M_Z = 91.1876 \pm 0.0021 \text{ GeV}$ $sin^2 \theta_W = 1 \frac{M_W^2}{M_Z^2}$
- $\Delta \sin^2 \theta_w = 0.00030$ yields to $\Delta M_w = 15$ MeV

Phys. Rev. D 89, 072005 (2014)

Arán García-Bellido

Z production and decay at the Tevatron

Conclusions

- ▶ DØ ($\mu\mu$, 10.4 fb⁻¹): d σ /d ϕ * is well described by the data
- \triangleright DØ (ee, 9.7 fb⁻¹): $\sin^2\theta^{\ell}_{eff} = 0.23146 \pm 0.00047$
- ► CDF ($\mu\mu$, 9.2 fb⁻¹): $\sin^2\theta_{eff}^{\ell} = 0.2315 \pm 0.00100$
 - $M_{W}(indirect) = 80.365 \pm 0.047 \text{ GeV}^{A_{lr}(SLD)}$
- Still to come from DØ:
 - sin²θ_w μμ channel
 - Z decay angular coefficients (ee)
- Still to come from CDF:
 - \bullet sin² $\theta_{\rm W}$ ee channel

- Similar to LEP and SLD
- Indirect and direct measurements of M_w will have similar uncertainties

Extras

The systematic error is smaller than the statistical error in all bins of $\phi*$ in the peak region.

Arán García-Bellido

Z production and decay at the Tevatron

	OX
U	W

	CC-CC	CC-EC	EC-EC	Combined
$\sin^2 \theta_W$	0.23140	0.23142	0.22986	0.23138
Statistical	0.00116	0.00047	0.00276	0.00043
Systematic	0.00009	0.00009	0.00019	0.00008
Energy Calibration	0.00003	0.00001	0.00004	0.00001
Energy Smearing	0.00001	0.00002	0.00013	0.00002
Background	0.00002	0.00001	0.00002	0.00001
Charge Misidentification	0.00002	0.00004	0.00012	0.00003
Electron Identification	0.00008	0.00008	0.00005	0.00007
Total	0.00116	0.00048	0.00277	0.00044

Additionally:

Δhigher orders =

small"
ΔPDF = 0.00017

► CDF

TABLE IV. Summary of the systematic uncertainties on the extraction of the weak mixing parameters $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ and $\sin^2 \theta_W$.

Source	$\sin^2 heta_{ m eff}^{ m lept}$	$\sin^2 \theta_W$
Momentum scale	± 0.00005	± 0.00005
Backgrounds	± 0.00010	± 0.00010
QCD scales	± 0.00003	± 0.00003
CT10 PDFs	± 0.00037	± 0.00036
EBA	± 0.00012	± 0.00012

New method to constrain PDFs

- Bodek et al., arXiv: 1507.02470
- Sensitivity plot of A_{FB}(M)
 - ▶ 10 replicas of NNPDF3.0 and the default (261000)
 - sin2θW is fixed at a value of 0.2244
 - The difference originates from the differences in d/u(x) and the antiquark fractions for the different PDF replicas
 - With the χ^2 AFB weighting method the PDF error in the extracted value of sin20W is reduced from 0.00027 to 0.00020.

Arie Bodek, ICHEP 2014

7

1st innovation: $\sin^2 \theta_w$ is constant --> $\sin^2 \theta_{eff}$ $|ept| (M_{z_i}$ flavor)

Full FITTER EW radiative corrections Enhanced Born Approximation (EBA)

Implemented by the Rochester CDF group (Willis Sakumoto, A. Bodek, J.-Y. Han), see Phys. Rev. D88, 072002 (2013) Appendix A arXiv:1307.0770v3 [hep-ex]

$$g_V^f \gamma_\mu + g_A^f \gamma_\mu \gamma_5$$
. The Born-level couplings are
$$g_V^f = T_3^f - 2Q_f \, \sin^2 \theta_W$$

$$g_A^f = T_3^f,$$

If RESBOS is used then the EBA EW correction to $sin^2\theta_{eff}$ = 0.00031 +-0.00012 Vs. stat error 0.00080 ($\mu^+\mu^-$) 9 fb⁻¹ Vs. stat error 0.00040 (e^+e^-) 9 fb⁻¹

They are modified by ZFITTER 6.43 form factors (which are complex)

$$\begin{split} g_V^f &\to \sqrt{\rho_{eq}} \, (T_3^f - 2Q_f \kappa_f \, \sin^2 \theta_W), \ \text{and} \qquad & \text{SM}(\sin^2 \theta_W) \overset{\text{EWK}}{\longmapsto} \sin^2 \theta_{\text{eff}}(s) \overset{\text{QCD}}{\longleftrightarrow} A_4(s), \\ g_A^f &\to \sqrt{\rho_{eq}} \, T_3^f, \qquad & \text{A}_{\text{FB}} = (3/8) \, \mathsf{A}_4 \end{split}$$

- T₃ and sin²θ_w → effective T₃ and sin²θ_w: 1-4% multiplicative form factors
- On-mass shell scheme: $\sin^2\theta_w \equiv 1 M_w^2/M_z^2$ to all orders $\sin^2\theta_{eff}^{-lept} \simeq 1.037 \cdot \sin^2\theta_w$ [ZFITTER $\kappa_e(\sin^2\theta_w, M_z)$ form factor]

Arán García-Bellido