EPS Conference on High Energy Physics Vienna, July 23, 2015 # Z production and asymmetry at the Tevatron - Z production kinematics - DØ dimuon $d\sigma/d\phi^*$ (10.4 fb⁻¹) - ► Z decay (forward backward asymmetry \rightarrow sin² θ_w) - DØ dielectron (9.7 fb⁻¹) - CDF dimuon (9.2 fb⁻¹) - Indirect M_w measurement - Summary #### Motivation - ▶ Drell/Yan production at the Tevatron: $p\overline{p} \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$ - ► Measure production kinematics $d\sigma_7/dp_T$ - Sensitive to initial state radiation - Important background for searches - ightharpoonup Measure decay properties A_{FB} and $sin^2\theta_w$ - Try to disentangle LEP/SLD tension - $A_{FB}^{Ob}(LEP) \rightarrow 0.23221 \pm 0.00029$ - $A_{\ell}(SLD) \rightarrow 0.23098 \pm 0.00026 (3.2\sigma \text{ away})$ - Indirect measurement of W mass - Tevatron measurement is complementary to LHC - Z mainly produced by valence quark annihilation - CP symmetric collider is ideal for asymmetry measurements ### DØ μμ kinematic distributions 10.4 fb⁻¹ - ► Measurements of $d\sigma/dp_{T}$ are limited by experimental resolution on $p_{T}(Z)$ - Introduce new variable φ* - Determined only from angles (good resolution) - Highly correlated with $a_T/M_{\ell\ell}$ - Less correlated to lepton isolation than p_T - ► Split analysis by rapidity and M_n regions: - 30<M_{...}<60 GeV: sensitive to small-x effects</p> - 74k events (90% signal) - 70<M_{...}<110 GeV: peak region</p> - 645k events (99.84% signal) - 160<M_{uu}<500 GeV: constrain ISR unc.</p> - 2k events (<70% signal) - Correction factors in each φ* bin to go to particle level after FSR $$\phi^* = \tan\left(\frac{\phi_{\text{acop}}}{2}\right) \sin\theta_{\eta}^*$$ $$cos\theta_{\eta}^* = tanh\left(\frac{\eta^- - \eta^+}{2}\right)$$ Vesterinen, Wyatt, NIM A 602, 432 (2009) Banfi et al., EPJ C 71, 1600 (2011) #### Distributions at the Z peak Distributions low mass region High φ* disagreement: known RESBOS absence of the NNLO correction factor for the photon exchange diagram. Arán García-Bellido Z pi Z production and decay at the Tevatron #### Distributions high-mass region #### DØ kinematic distributions - Calculate ratio of (1/σ)(dσ/dφ*) between central and forward rapidity regions - Reduce uncertainties from QCD scales to percent level - Suggests new variable less sensitive to theoretical uncertainty - In summary: - Unprecedented precision in the peak region (645k events): tuned RESBOS in excellent agreement - Low-mass region (74k events) agrees reasonably well with RESBOS - High-mass region (2k events) seems ok, but limited statistics ### Measuring sin²θ_w - Measure the weak mixing angle from the forward-backward asymmetry of the polar angle distribution in Z/y* lepton pairs - Dilepton frame (Collins-Soper): θ^* polar angle of the ℓ with the incoming quark - ► At Born level: $\frac{d\sigma}{dcos\theta^*} \propto 1 + cos^2\theta^* + A_4cos\theta^*$ • When $$p_T(Z) \rightarrow 0$$ $A_{FB} \equiv \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{3}{8}A_4$ - ► A₄ term is parity violating from interference of vector and axial currents - ightharpoonup Measure A_{FB} in bins of $M_{\ell\ell}$ - Produce MC templates for A_{FB} , M_{II} , $\sin^2\theta_{W}$ - Extract $sin^2θ_w$ by a $χ^2$ comparison between data and MC Forward: $\cos \theta^* > 0$ Backward: $\cos \theta^* < 0$ $$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$ ## DØ sin²θ_w from dielectrons in 9.7 fb⁻¹ - Require two electrons with p_⊤>25 GeV - Tight track match requirement - CC ($|\eta|$ <1.1) and EC (1.5< $|\eta|$ <3.2) - ► Use $75 < M_{ee} < 115 \text{ GeV} \rightarrow 560 \text{k events}$ - New method for energy calibration - Apply scale factor as a function of L_{inst} first and then η - M_{ee} peak scaled to LEP value in each bin - Separate calibrations for data and MC Arán García-Bellido Z production and decay at the Tevatron ## DØ sin²θ_w dielectron analysis - Corrections are applied to MC to account for: - Smearing of electron energy - **Efficiency corrections in p_{\tau}(e), η(e)** - ightharpoonup L_{inst} and z_{PV} reweighting to match data - \blacksquare Higher order effects: NNLO Z $p_{\scriptscriptstyle T}$ and y to match RESBOS - Produce 2D templates of M_{ee} and cosθ* by reweighing default MC (sin²θ_w=0.232) as a function of sin²θ_w - Extract $\sin^2\theta_w$ by fitting raw A_{FB} to templates with different $\sin^2\theta_w$ values - No unfolding: MC is carefully corrected to describe the data ## DØ sin²θ_w dielectron results 9.7 fb⁻¹ $\sin^2\theta_w = 0.23139 \pm 0.00043(stat) \pm 0.00008(syst) \pm 0.00017(PDF)$ Transform to sin²θ^ℓ_{eff} by comparing Pythia and RESBOS (with enhanced Born approximation corrections): $\sin^2\theta_{eff}^{\ell} = 0.23146 \pm 0.00047$ arXiv:1408.5016 Accepted by PRL ## CDF sin²θ_w from dimuons in 9.2 fb⁻¹ - ► Tight muon cuts: p_T>20 GeV - Dimuon pairs ($|η_1| < 1$, $|η_2| < 1.5$) - All dimuon detector topologies - |y| < 1; $M_{\mu\mu} > 40$ GeV - 276k events - $ho_{T}(\mu)$ calibration (Rochester method) Tune data and simulation to post-FSR generator level in 64 individually calibrated n. o bins cos ϑ #### CDF angular event weighting - Extract $A_4(M_Z)$ in bins of cosθ* and average the results - Assume $(εA)^- = (εA)^+$ in each bin - Recast binned measurement into unbinned weighted event sum - Weights depend on M_{μ} , $p_{\tau}(\ell\ell)$, $\cos\theta^*$, ϕ^* - All acc. and effs. cancel to first order - Equivalent to ML fit, improves the statistical precision up to 20% - Does not take into account: - Smearing due to detector resolution - 2^{nd} order bias due to low acceptance regions and non-uniformity: $(\varepsilon A)^{-} \neq (\varepsilon A)^{+}$ $$rac{d\sigma}{cos heta^*}\propto 1+cos^2 heta^*+ \ rac{A_0}{2}(1-3cos^2 heta^*)+A_4cos heta^* \ ho_0$$ = 0 for $ho_T(Z) o 0$ A. Bodek, EPJ. C67, 321 (2010) #### **CDF** unfolding - Angular event weighting provides first order acceptance correction - Use unfolding to correct for resolution and QED FSR: - Two 16x16 unfolding matrices (16 mass bins, +, regions) - Bin-by-bin second order bias correction: - Additive factor (True-Estimated) to unfolded A_{FR} in M bins Arán García-Bellido Z production and decay at the Tevatron ## CDF dimuon sin²θ_w results - **Perform** χ^2 fit based on RESBOS templates with different sin²θ_w - Full ZFITTER EW radiative corrections, Enhanced Born Approximation - Include full complex form factors (also compared to POWHEG, LO) $\sin^2\theta_{eff}^{\ell}$ = 0.23150 ± 0.00090(stat) ± 0.00011(sys) ± 0.00036(PDF) ► On-shell renormalization scheme, $sin^2\theta_w \equiv 1-(M_w^2/M_z^2)$ to all orders $\sin^2\theta_{\rm W} = 0.2233 \pm 0.0008 \pm 0.0004$ Phys. Rev. D 89, 072005 (2014) ## CDF indirect M_W measurement ► M_w measured at the Tevatron directly: M_w=80.385±0.015 GeV - **b** By measuring the on-shell $\sin^2\theta_w$ we obtain an indirect measurement of M_w : M_w (indirect) = 80.365 ± 0.047 GeV - Using $M_Z = 91.1876 \pm 0.0021 \text{ GeV}$ $sin^2 \theta_W = 1 \frac{M_W^2}{M_Z^2}$ - $\Delta \sin^2 \theta_w = 0.00030$ yields to $\Delta M_w = 15$ MeV Phys. Rev. D 89, 072005 (2014) Arán García-Bellido Z production and decay at the Tevatron #### Conclusions - ▶ DØ ($\mu\mu$, 10.4 fb⁻¹): d σ /d ϕ * is well described by the data - \triangleright DØ (ee, 9.7 fb⁻¹): $\sin^2\theta^{\ell}_{eff} = 0.23146 \pm 0.00047$ - ► CDF ($\mu\mu$, 9.2 fb⁻¹): $\sin^2\theta_{eff}^{\ell} = 0.2315 \pm 0.00100$ - $M_{W}(indirect) = 80.365 \pm 0.047 \text{ GeV}^{A_{lr}(SLD)}$ - Still to come from DØ: - sin²θ_w μμ channel - Z decay angular coefficients (ee) - Still to come from CDF: - \bullet sin² $\theta_{\rm W}$ ee channel - Similar to LEP and SLD - Indirect and direct measurements of M_w will have similar uncertainties #### **Extras** The systematic error is smaller than the statistical error in all bins of $\phi*$ in the peak region. Arán García-Bellido Z production and decay at the Tevatron | | OX | |---|----| | U | W | | | CC-CC | CC-EC | EC-EC | Combined | |--------------------------|---------|---------|---------|----------| | $\sin^2 \theta_W$ | 0.23140 | 0.23142 | 0.22986 | 0.23138 | | Statistical | 0.00116 | 0.00047 | 0.00276 | 0.00043 | | Systematic | 0.00009 | 0.00009 | 0.00019 | 0.00008 | | Energy Calibration | 0.00003 | 0.00001 | 0.00004 | 0.00001 | | Energy Smearing | 0.00001 | 0.00002 | 0.00013 | 0.00002 | | Background | 0.00002 | 0.00001 | 0.00002 | 0.00001 | | Charge Misidentification | 0.00002 | 0.00004 | 0.00012 | 0.00003 | | Electron Identification | 0.00008 | 0.00008 | 0.00005 | 0.00007 | | Total | 0.00116 | 0.00048 | 0.00277 | 0.00044 | | | | | | | Additionally: Δhigher orders = small" ΔPDF = 0.00017 #### ► CDF TABLE IV. Summary of the systematic uncertainties on the extraction of the weak mixing parameters $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ and $\sin^2 \theta_W$. | Source | $\sin^2 heta_{ m eff}^{ m lept}$ | $\sin^2 \theta_W$ | |----------------|----------------------------------|-------------------| | Momentum scale | ± 0.00005 | ± 0.00005 | | Backgrounds | ± 0.00010 | ± 0.00010 | | QCD scales | ± 0.00003 | ± 0.00003 | | CT10 PDFs | ± 0.00037 | ± 0.00036 | | EBA | ± 0.00012 | ± 0.00012 | #### New method to constrain PDFs - Bodek et al., arXiv: 1507.02470 - Sensitivity plot of A_{FB}(M) - ▶ 10 replicas of NNPDF3.0 and the default (261000) - sin2θW is fixed at a value of 0.2244 - The difference originates from the differences in d/u(x) and the antiquark fractions for the different PDF replicas - With the χ^2 AFB weighting method the PDF error in the extracted value of sin20W is reduced from 0.00027 to 0.00020. #### Arie Bodek, ICHEP 2014 7 1st innovation: $\sin^2 \theta_w$ is constant --> $\sin^2 \theta_{eff}$ $|ept| (M_{z_i}$ flavor) Full FITTER EW radiative corrections Enhanced Born Approximation (EBA) Implemented by the Rochester CDF group (Willis Sakumoto, A. Bodek, J.-Y. Han), see Phys. Rev. D88, 072002 (2013) Appendix A arXiv:1307.0770v3 [hep-ex] $$g_V^f \gamma_\mu + g_A^f \gamma_\mu \gamma_5$$. The Born-level couplings are $$g_V^f = T_3^f - 2Q_f \, \sin^2 \theta_W$$ $$g_A^f = T_3^f,$$ If RESBOS is used then the EBA EW correction to $sin^2\theta_{eff}$ = 0.00031 +-0.00012 Vs. stat error 0.00080 ($\mu^+\mu^-$) 9 fb⁻¹ Vs. stat error 0.00040 (e^+e^-) 9 fb⁻¹ They are modified by ZFITTER 6.43 form factors (which are complex) $$\begin{split} g_V^f &\to \sqrt{\rho_{eq}} \, (T_3^f - 2Q_f \kappa_f \, \sin^2 \theta_W), \ \text{and} \qquad & \text{SM}(\sin^2 \theta_W) \overset{\text{EWK}}{\longmapsto} \sin^2 \theta_{\text{eff}}(s) \overset{\text{QCD}}{\longleftrightarrow} A_4(s), \\ g_A^f &\to \sqrt{\rho_{eq}} \, T_3^f, \qquad & \text{A}_{\text{FB}} = (3/8) \, \mathsf{A}_4 \end{split}$$ - T₃ and sin²θ_w → effective T₃ and sin²θ_w: 1-4% multiplicative form factors - On-mass shell scheme: $\sin^2\theta_w \equiv 1 M_w^2/M_z^2$ to all orders $\sin^2\theta_{eff}^{-lept} \simeq 1.037 \cdot \sin^2\theta_w$ [ZFITTER $\kappa_e(\sin^2\theta_w, M_z)$ form factor] Arán García-Bellido