Tevatron Constraints on Models of the Higgs Boson with Exotic Spin and Parity Using Decays to $b\bar{b}$ Quark Pairs

Gavin Davies
On behalf of the CDF and DØ Collaborations
Outline

- Introduction
 - Tevatron
 - Higgs searches @ Tevatron
- Higgs Results
 - General
 - Spin-parity
- Conclusions

Reminder: Tevatron stopped fall 2011 ~ 10fb⁻¹ per expt after data quality
• Tevatron
 - Bridge between LEP search & LHC measurement era following discovery
 - 1st exclusion after LEP in 2008
 • And then regularly updated
 - 2012: Evidence for coupling to fermions
 - Complementary as exploiting primarily $H \rightarrow bb$ decays

- ‘Higgs studies at Tevatron’
 • PRD 88, 052014 (2013)

- ‘Tevatron spin-parity constraints’
 • PRL 114, 151802 (2015)
• 'Low' mass $m_H < 135$ GeV
 - Dominated by:
 $qar{q}' \rightarrow WH \rightarrow \ell \nu b\bar{b}$
 $q\bar{q} \rightarrow ZH \rightarrow \ell\ell b\bar{b}$
 $q\bar{q} \rightarrow ZH \rightarrow \nu\bar{\nu} b\bar{b}$

• 'High' mass $m_H > 135$ GeV
 - Dominated by:
 $gg \rightarrow H \rightarrow WW(\ast) \rightarrow \ell \nu' \nu'$

• Less sensitive channels add overall sensitivity
• All channels sub-divided for sensitivity
• Exclusion cross section
 - Sensitivity over ~full mass range
 - 95% CL limit @ $m_H = 125$ GeV:
 - $1.06 \times \sigma$(SM) expected
 - $2.44 \times \sigma$(SM) observed

• Log-likelihood ratio (LLR)
 - Relative agreement of B-only and S+B hypotheses
 - Expected S+B shows good sensitivity up to ~185 GeV

~3σ excess at 120-125 GeV
 - Consistent with SM Higgs
Quantifying the Excess

- **Compatibility with B-only prediction (left)**
 - Minimum local p-value at $m_H = 120$ GeV: 3.1σ (2.0σ expected)
 - p-value at $m_H = 125$ GeV: 3.0σ (1.9σ expected)

- **Compatibility with S+B prediction (right)**
 - Maximum likelihood fit with Higgs cross section as a free parameter
 - $\mu = \sigma/\sigma_{SM} = 1.4 \pm 0.6$ @ 125 GeV
Tevatron cross section fits

CDF

- $m_h = 125 \text{ GeV/c}^2$
- Green: Combined (68% C.L.)
- Red: Single channel

PRD 88, 052013 (2013)

- $t\bar{t}H \rightarrow t\bar{t}b\bar{b}$
- $H \rightarrow \gamma\gamma$
- $H \rightarrow W^+W^-$
- $H \rightarrow \tau^+\tau^-$
- $VH \rightarrow Vb\bar{b}$

$D\bar{O}$, $L_{\text{int}} \leq 9.7 \text{ fb}^{-1}$

- $M_H = 125 \text{ GeV}$
- Green: Combined (68%)
- Black: Single Channel

PRD 88, 052011 (2013)

- Green: Combined (68% C.L.)
- Black: Single channel

PRD 88, 052014 (2013)

- $t\bar{t}H \rightarrow t\bar{t}b\bar{b}$
- $H \rightarrow \gamma\gamma$
- $H \rightarrow W^+W^-$
- $H \rightarrow \tau^+\tau^-$
- $VH \rightarrow Vb\bar{b}$

Tevatron Run II, $L_{\text{int}} \leq 10 \text{ fb}^{-1}$

- $m_h = 125 \text{ GeV/c}^2$
- μ
 - $5.97^{+3.39}_{-3.12}$
 - $0.94^{+0.85}_{-0.83}$
 - $1.68^{+2.28}_{-1.68}$
 - $1.59^{+0.69}_{-0.72}$

Best Fit $(\sigma \times \text{Br})/\text{SM}$
• Use LHCHXSWG framework (arXiv:1209:0040)

• 1D fits: Vary each of κ_W, κ_Z or κ_f independently in turn
 - Negative values for κ_f (κ_W) preferred due to $H \rightarrow \gamma\gamma$ excess

• 2D fits: Probe custodial symmetry i.e. $\lambda_{WZ} = \kappa_W/\kappa_Z \approx 1$ (SM) or assume $\lambda_{WZ} = 1$

• All consistent with SM
Spin / Parity

- **Tevatron sensitive in $b\bar{b}$ final states**
 - VH cross section at threshold sensitive to β, & hence J^P assignment

 e.g. Ellis et al., JHEP 1211 134 (2012)

 $J^P = 0^+$; $\sigma \sim \beta$
 $J^P = 0^-$; $\sigma \sim \beta^3$
 $J^P = 2^+$; $\sigma \sim \beta^5$

- **Strategy**
 - Models tested
 - 0^-: Model of Ellis et al.
 i.e. Basic dim. 5 effective coupling
 - 2^+: Standard RS graviton model
 - Re-use published VH \rightarrow V$b\bar{b}$ analyses, assume $m_X = 125$GeV
 - Main discriminating variable
 - Invariant or transverse mass
• Published event selection, b-tag, jet multiplicity & lepton categories
• DØ [Phys. Rev. Lett. 113, 161802 (2014)]
 - Split into high (HP) & low purity (LP) samples
 - Final discriminant: invariant or transverse mass

Spin / Parity
Published event selection, b-tag, jet multiplicity & lepton categories

- Final discriminant:
 - MVA approach, combination of NNs trained against SM and BSM signals
 - Information on mass of VX system included
Spin / Parity

- **LLR** = \(-2\log[L(H1)/L(H0)]\) with $H1=(2^+ + \text{bkg})$ or $(0^- + \text{bkg})$ & $H0=(0^+ + \text{bkg})$
 - $CL_s = CL_{H1}/CL_{H0}$

 - **CDF**
 - 0^- signal excluded at 99.99% CL (99.92% exp)
 - 2^+ signal excluded at 99.1% CL (99.3% exp)

 - **DØ**
 - 0^- signal excluded at 97.6% CL (99.9% exp)
 - 2^+ signal excluded at 99.0% CL (99.9% exp)
- Assuming production rate x BR of X same as for SM (i.e. $\mu = 1$)
 - 0^- signal excluded at 5.0σ (4.8σ exp)
 - 2^+ signal excluded at 4.9σ (4.6σ exp)
- Other values of μ tested
Consider admixture of 0^+ & 0^- (or 2^+)

Limits on 0^- (or 2^+) fraction

$-\mu_{SM}=0$, exclude at 95%CL

- $f_{0^-} > 0.36$ (0.32 exp)
- $f_{2^+} > 0.36$ (0.33 exp)

'Exotic fraction' vs total rate

$\mu = \mu_{exotic} + \mu_{SM}$
• Tevatron
 - Sensitivity over most of accessible mass range
 - Excess from $115 < m_H < 140$ GeV
 - $\sim 3\sigma$ significance at 125 GeV
 - Coupling & spin results consistent with SM Higgs

• Tevatron: Continued to provide valuable information on nature of observed boson
 - Look forward to Tevatron + LHC $H \rightarrow bb$ combination

• Testament to Tevatron’s legacy: Making of a new generation of physicists
 - Many moved to LHC
The CDF and DØ Collaborations
• ~12fb$^{-1}$ delivered, ~11fb$^{-1}$ recorded, ~10fb$^{-1}$ after data quality per expt
 - with $L_{\text{inst}} \leq 4 \times 10^{32}$

Integrated Luminosity 11871.03 (1/pb)

Primary Higgs analyses: 9.5-10fb$^{-1}$

Many thanks to Accelerator Division
• Proton-antiproton
 - Unlikely to be repeated
 - Dominantly qq collisions not gg as at LHC
 • Gives enhanced xsect for some processes eg VH
 - Initial CP eigenstate (and DØ’S ability to reverse magnetic field)
 • Enable incisive asymmetry and CP measurements eg A_{fb} in tt
• Relative cleanliness (low pileup) facilitates precision measurements
 - e.g. W mass, top quark mass
• e.g. looking at DØ publications

Focus here: Higgs

Wealth of other results reported elsewhere
@ $m_H = 125 \text{ GeV}$

LHC

Tevatron

Main mode

Supporting mode
Details: Final Full Combination

<table>
<thead>
<tr>
<th>CDF Channel ($V = W, Z$ and $\ell = e, \mu$)</th>
<th>Luminosity (fb$^{-1}$)</th>
<th>M_H (GeV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WH \rightarrow \ell \nu b \bar{b}$</td>
<td>9.45</td>
<td>90–150</td>
<td>PRL 109, 111804 (2012)</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell \nu b \bar{b}$</td>
<td>9.45</td>
<td>90–150</td>
<td>PRL 109, 111803 (2012)</td>
</tr>
<tr>
<td>$ZH \rightarrow \nu \nu b \bar{b}$</td>
<td>9.45</td>
<td>90–150</td>
<td>PRD 87, 052008 (2013)</td>
</tr>
<tr>
<td>$WH + ZH \rightarrow jj b \bar{b}$</td>
<td>9.45</td>
<td>100–150</td>
<td>JHEP 02, 004 (2013)</td>
</tr>
<tr>
<td>$t\bar{t}H \rightarrow W^+ bW^- b\bar{b}$</td>
<td>9.45</td>
<td>100–150</td>
<td>PRL 109, 181802 (2012)</td>
</tr>
<tr>
<td>$H \rightarrow W_+ W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$</td>
<td>9.7</td>
<td>110–200</td>
<td>PRD 88, 052012 (2013)</td>
</tr>
<tr>
<td>$H \rightarrow W_+ W^- \rightarrow \ell \tau_\nu$</td>
<td>9.7</td>
<td>110–200</td>
<td>PRD 88, 052012 (2013)</td>
</tr>
<tr>
<td>$WH \rightarrow WW^- \rightarrow \ell \ell, \ell^\pm \ell^\pm$</td>
<td>9.7</td>
<td>130–200</td>
<td>PRD 88, 052012 (2013)</td>
</tr>
<tr>
<td>$WH \rightarrow WW^- \rightarrow \ell \ell, \ell^\pm \ell^\pm$</td>
<td>9.7</td>
<td>130–200</td>
<td>PRD 88, 052012 (2013)</td>
</tr>
<tr>
<td>$ZH \rightarrow ZW^- \rightarrow \ell \ell + jet(s)$</td>
<td>9.7</td>
<td>110–200</td>
<td>PRD 88, 052012 (2013)</td>
</tr>
<tr>
<td>$H + X \rightarrow \tau^+ \tau^- + jet(s)$</td>
<td>9.7</td>
<td>100–150</td>
<td>PRL 108, 181804 (2012)</td>
</tr>
<tr>
<td>$H \rightarrow \gamma \gamma$</td>
<td>10.0</td>
<td>100–150</td>
<td>PLB 717, 173 (2012)</td>
</tr>
<tr>
<td>$H \rightarrow ZZ$</td>
<td>9.7</td>
<td>120–200</td>
<td>PRD 86, 072012 (2012)</td>
</tr>
</tbody>
</table>

CDF grand combination
| all CDF | 6.0–10.0 | 90–200 | PRD 88, 052013 (2013) |

<table>
<thead>
<tr>
<th>DØ Channel ($V = W, Z$ and $\ell = e, \mu$)</th>
<th>Luminosity (fb$^{-1}$)</th>
<th>M_H (GeV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WH \rightarrow \ell \nu b \bar{b}$</td>
<td>9.7</td>
<td>90–150</td>
<td>PRD 88, 052008 (2013)</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell \nu b \bar{b}$</td>
<td>9.7</td>
<td>90–150</td>
<td>PRD 88, 052010 (2013)</td>
</tr>
<tr>
<td>$ZH \rightarrow \nu \nu b \bar{b}$</td>
<td>9.5</td>
<td>100–150</td>
<td>PLB 716, 285 (2012)</td>
</tr>
<tr>
<td>$H \rightarrow W^+ W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$</td>
<td>9.7</td>
<td>100–200</td>
<td>PRD 88, 052006 (2013)</td>
</tr>
<tr>
<td>$H + X \rightarrow W^+ W^- \rightarrow \mu^\pm \tau^\mp + \leq 1$ jet</td>
<td>7.3</td>
<td>155–200</td>
<td>PLB 714, 237 (2012)</td>
</tr>
<tr>
<td>$H \rightarrow W^+ W^- \rightarrow \ell \nu q \bar{q}$</td>
<td>9.7</td>
<td>100–200</td>
<td>PRD 88, 052008 (2013)</td>
</tr>
<tr>
<td>$VH \rightarrow e e \mu/\mu e + X$</td>
<td>9.7</td>
<td>100–200</td>
<td>PRD 88, 052009 (2013)</td>
</tr>
<tr>
<td>$VH \rightarrow e^\pm \mu^\pm + X$</td>
<td>9.7</td>
<td>100–200</td>
<td>PRD 88, 052009 (2013)</td>
</tr>
<tr>
<td>$VH \rightarrow \nu q q \bar{q}$</td>
<td>9.7</td>
<td>100–200</td>
<td>PRD 88, 052008 (2013)</td>
</tr>
<tr>
<td>$VH \rightarrow \tau_h \tau_h \mu + X$</td>
<td>8.6</td>
<td>100–150</td>
<td>PRD 88, 052009 (2013)</td>
</tr>
<tr>
<td>$H + X \rightarrow \ell \tau_h j j$</td>
<td>9.7</td>
<td>105–150</td>
<td>PRD 88, 052005 (2013)</td>
</tr>
<tr>
<td>$H \rightarrow \gamma \gamma$</td>
<td>9.7</td>
<td>100–150</td>
<td>PRD 88, 052007 (2013)</td>
</tr>
</tbody>
</table>

DØ grand combination
| all DØ | 7.3–9.7 | 90–200 | PRD 88, 052011 (2013) |

CDF+DØ grand combination
| all CDF+DØ | 6.0–10.0 | 90–200 | PRD 88, 052014 (2013) |
Observed exclusion: $90 < m_H < 109 \text{ GeV}, \quad 149 < m_H < 182 \text{ GeV}$

Expected exclusion: $90 < m_H < 120 \text{ GeV}, \quad 140 < m_H < 184 \text{ GeV}$

95% CL limit @ $m_H = 125 \text{ GeV}: 1.06 \times \sigma(\text{SM}) \text{ expected}, 2.44 \times \sigma(\text{SM}) \text{ observed}$
Quantifying the Excess: LLR

- Log-likelihood ratio (LLR)
 - Relative agreement of B-only and S+B hypotheses
 - Throw pseudo-data to populate B-only and S+B models
 - Compare to observed
 - Expected S+B shows good sensitivity up to ~185 GeV
 - ~3σ excess at 120-125 GeV
 - Consistent with SM Higgs
Tevatron: $H \rightarrow bb$ Results

![Log-Likelihood Ratio vs. m_H](image1)

![Expected Standard Model $H \rightarrow bb$ Cross Section](image2)
• Measure deviations of couplings from SM prediction using LHCHXSWG framework (arXiv:1209:0040)

\[\sigma \cdot BR(ii \rightarrow H \rightarrow ff) = \sigma_{SM} \cdot BR_{SM} \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2} \]

- Assume all signals near 126 GeV from single resonance of zero width, with SM-like coupling structure

- Additionally: no additional invisible or undetected Higgs decay modes

 - e.g.

 \[\sigma(WH) \cdot BR(H \rightarrow bb) = \sigma(WH)_{SM} \cdot BR(H \rightarrow bb)_{SM} \frac{\kappa_W^2 \cdot \kappa_b^2}{\kappa_H^2} \]

 \[\kappa_{\gamma} = 1.28 \kappa_W - 0.28 \kappa_f \]

- Study fermion coupling, \(\kappa_f \) and boson couplings \(\kappa_W, \kappa_Z \) and \(\kappa_V \)
Couplings: 1D

- 1D fits: Vary each of κ_W, κ_Z and κ_f independently in turn

For $\kappa_Z = \kappa_f = 1$,

$$\kappa_w = \kappa_Z = 1$$

$$k_z = \pm (1.05^{+0.45}_{-0.55})$$

$$k_f = -2.64^{+1.59}_{-1.30}$$

$$k_w = -1.27^{+0.46}_{-0.29}$$ or $1.04 < k_w < 1.51$

Negative values for κ_w and κ_f preferred due to $H \rightarrow \gamma\gamma$ excess

All consistent with SM
• Probe custodial symmetry

 \[\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z} \approx 1 (\text{SM}) \]

 - Preferred region
 \[(\kappa_W, \kappa_Z) = (1.25, \pm 0.90) \]

 • Assume \(\lambda_{WZ} = 1 \)

 - Preferred regions
 \[(\kappa_V, \kappa_f) = (1.05, -2.40) \& \]
 \[(\kappa_V, \kappa_f) = (1.05, 2.30) \]

 All consistent with SM
Tevatron: Couplings

- Posterior probability densities

![Graphs showing posterior probability densities for Tevatron Run II, $L_{int} \leq 10$ fb$^{-1}$]
Spin / Parity

- Posterior probability density functions
• Consider admixture of 0^+ & 0^- (or 2^+), set limits on 0^- (or 2^+) fraction

Exclude at 95% CL

- $f_{0^-} > 0.32$ & $f_{2^+} > 0.35$ (no SM Higgs present)
- $f_{2^+} > 0.28$ & $f_{2^+} > 0.31$ (SM Higgs present)

Exclude at 95% CL

- $f_{0^-} > 0.80$
- $f_{2^+} > 0.67$
Spin / Parity

- Consider admixture of $0^+ \& 0^-$ (or $2^+)$, set limits on 0^- (or 2^+) fraction