Jets and correlations in heavy-ion collisions

Jana Bielčíková (Nuclear Physics Institute ASCR, Czech Republic)

Challenges of heavy-ion physics

Exploration of the QCD phase diagram:

- nature of the phase transition and search for the critical point
- properties of the quark-gluon plasma at high temperature (RHIC/LHC) and large density (GSI FAIR/NICA)

Complementarity of LHC, RHIC and future FAIR/NICA heavy-ion programs.

Note: lifetime of QGP is very short \rightarrow we need in-situ probes

Center of mass energies (Vs_{NN}) for different accelerators:

GSI:	1-2 GeV
FAIR:	2 -6 (10 GeV)
NICA:	4 - 11 GeV
RHIC:	7- 200 GeV
LHC:	2.76, 5 TeV

Hard probes: tomography of nuclear matter

Jets, heavy quarks, quarkonia :

originate from initial hard scattering of partons which carry a color charge interact with nuclear matter

Photons, W and Z bosons:

do not carry a color charge provide information about initial state nuclear parton distribution functions

> Jets: this talk c, b, γ, W and Z next HI talk

Goal:

use in-medium parton energy loss to quantify medium properties

Unknown QCD Medium

- energy loss different for gluons and light/heavy quarks (color factor, dead cone effect)
- parton interaction with medium not trivial: depends on strength of coupling, dynamics of fireball ...

Dedicated heavy-ion experiments at RHIC

STAR:

- full azimuthal coverage
- excellent tracking and PID (TPC, TOF)
- electromagnetic calorimeter (BEMC)

NEW: Muon Telescope Detector, Heavy Flavor Tracker → precision measurements of heavy quarks J. Bielcikova (NPLASCR)

PHENIX:

- central arms: electrons

 (|η| < 0.35, Δφ = π)
 tracking: DC, PC
 PID: RICH, EMCal
- forward arms: muons (-1.2 < $|\eta|$ < 2.2 , $\Delta \phi = 2\pi$) tracking: wire chamber

ALICE: dedicated HI experiment at the LHC

Central Barrel (|η|<0.9)

- hadrons, e and γ
- TPC: efficient tracking down to ~ 100 MeV/c
- ITS: excellent vertexing capability

Excellent particle identification capabilities! Basically all known types.

ALICE: dedicated HI experiment at the LHC

Central Barrel ($|\eta|$ < 0.9)

- hadrons, e and γ
- TPC: efficient tracking down to ~ 100 MeV/c
- ITS: excellent vertexing capability

Excellent particle identification capabilities! Basically all known types.

Some basic heavy-ion physics terminology ...

"hot/dense QCD matter" **final state effects** thermal and collective particle production (flow) "cold nuclear matter" initial state effects shadowing and gluon saturation

"vacuum" reference

Some basic heavy-ion physics terminology ...

Centrality and nuclear modification factor

Centrality in A+A:

- impact parameter cannot be directly measured and has to be estimated based on measured e.g. N_{ch}, E_T, ZDC ...
- centrality is typically expressed as a % fraction of total geometric cross section
- Glauber model: connects centrality to a number of binary collisions (N_{coll}) and participants (N_{part})

Nuclear modification factor:

... the way to compare an observable in A+A collisions to the reference (p+p or peripheral A+A)

J. Bielcikova (NPI ASCR)

Particle production in central Pb+Pb collisions

- suppression of charged hadron production: R_{AA}(LHC) < R_{AA}(RHIC)
- minimum $R_{AA} \sim 0.14$ at $p_T = 6-7$ GeV/c
- increase of R_{AA} with p_T but even at $p_T \sim 100$ GeV/c $R_{AA} < 1$
- although R_{AA} is known to be limited in sensitivity to models of quenching, these data excluded already some of them

ATLAS: arXiv:1504.04337, ALICE: PLB 720 (2013) 52, CMS: EPJ C72 (2012) 1945

J. Bielcikova (NPI ASCR)

Jet tomography in heavy-ion collisions

 jet reconstruction is performed with a collinear and infrared safe anti-kt algorithm

Challenge for experimentalists:

- large and fluctuating background:
 <ρ> ≈ 180 GeV/c
 in central Pb-Pb collisions @ 2.76 TeV
- → limits jet resolution parameter R to modest values R ~ 0.2-0.4
- average background subtracted on jetby-jet basis and fluctuations together with instrumental effects unfolded on statistical basis

ALICE, JHEP 1203 (2012), 053

How much are jets modified?

How much are jets modified?

Dijet asymmetry in central Pb+Pb collisions

ATLAS: PRL 105 (2010) 252303

Where did the energy go? First studies in CMS paper: PRC 84 (2011) 024906 J. Bielcikova (NPI ASCR)

Where did the energy go?

R=0.3

PbPb

0.4

(GeV/c)

<"" •" •" •

0-10%

01

0.5

PbPb-pp

1.5

 $|\eta_{trk}| < 2.4$

 ΔR

Path length effects on di-jet production

 $2|\phi^{\text{lead}}-\Psi_2|$

earlier study of jet production vs. event plane showed modest path length dependence $(v_2^{jet} \sim 2-5\%)$

ATLAS: PRL 111 (2013)152301

Study di-jet asymmetry A, vs. event plane, extract its elliptical modulation c_2 .

 $2|\phi^{\text{lead}}-\Psi_{2}|$

 $2|\phi^{\text{lead}}-\Psi_{-}$

Path length effects on di-jet production

earlier study of jet production vs. event plane showed modest path length dependence $(v_2^{jet} \sim 2-5\%)$

ATLAS: PRL 111 (2013)152301

Study di-jet asymmetry A, vs. event plane, extract its elliptical modulation c_2 .

 c_2 is small (<2%) and negative!

Data indicate larger A₁ for leading jets oriented out-of-plane than for in-plane ones.

Neighbouring jet production in Pb-Pb collisions

Production of neighbouring jets quantified using a rate of jets accompanying a given test jet

$$R_{\Delta R} = \frac{1}{dN_{jet}^{test}/dE_{T}^{test}} \sum_{i=1}^{N_{jet}^{test}} \frac{dN_{jet,i}^{nbr}}{dE_{T}^{test}} (E_{T}^{test}, E_{T,min}^{nbr}, \Delta R)$$

Similarly as for inclusive jets introduce nuclear modification factor $\rho_{R\Delta R}$

 $\rho_{R\Delta R} = R_{\Delta R} \text{ (central)} / R_{\Delta R} \text{ (peripheral)}$

Study its dependence on:

- E_T of test jet
- E_{T} of neighbouring jet

D. Perepelitsa (ATLAS), Thu 14:50

Neighbouring jet production in Pb-Pb collisions

ATLAS, arXiv:1506.08656

Semi-inclusive recoil jets in Pb-Pb

Recoil jet yields are suppressed (ΔI_{AA}): suppression is independent of R and slowly decreases with jet p_T

No evidence of intra-jet broadening: Δ_{recoil} for R=0.2/0.5 similar in pp

and central Pb-Pb collisions J. Otwinovski (ALICE)

Thu 15:40

Hadron-jet correlations at RHIC

J. Rusnak (STAR) Thu 14:30

STAR@RHIC 0.2 TeV ALICE@ LHC 2.76 TeV 10^{-1} IICF Au+Au, √s_{NN}=200 GeV $(1/N_{rig}) dN_{jets} / (dp_{ch}^{ch} d\eta_{jet}) (GeV/c)^{-1}$ $9.0 < p_{_{
m T}}^{trig} < 30.0 ~GeV/c$ 0-10% Pb-Pb √s_{NN} = 2.76 TeV 10⁻² Anti- $k_{\rm T}$ charged, R = 0.4 $A_{iet} > 0.20, R = 0.3$ Preliminary $\pi - \Delta \dot{\varphi} < 0. \check{6}$ anti-k₊ TT{20,50} - TT{8,9} <u>60</u> $\Delta p_T \sim -6\pm 2 \text{ GeV/c}$ ₹ - 0%-10% 60%-80% stat. error 0.4 ALICE data syst. uncertainty Shape uncertainty 0.2 $\Delta p_{T} \sim 8 \text{ GeV/c}$ Correlated uncertainty 10^{-7} p^{ch}_{T,jet}(GeV/c) ALICE, arXiv:1506.03984 <u>-</u>С 10⁻¹ Larger suppression at RHIC 10 30 20 0 p_{T,jet}^{ch} (GeV/c) compared to the LHC energy.

Nuclear modification factor "I_{CP}":

- close to 1 at low p_T
- large suppression at $p_T > 10 \text{ GeV/c: } I_{CP} \sim 0.2$

J. Bielcikova (NPI ASCR)

A word of caution: different kinematic selections, $\Delta \phi$ cut, ...

Acoplanarity?

ALICE@ LHC 2.76 TeV

Width (σ) consistent in Pb+Pb with PYTHIA embedded data .

No evidence of medium-induced acoplanarity of recoil jets at the LHC.

Acoplanarity?

ALICE@ LHC 2.76 TeV

Width (σ) consistent in Pb+Pb with PYTHIA embedded data .

No evidence of medium-induced acoplanarity of recoil jets at the LHC.

Low-p_T trigger: broadening with centrality

J. Bielcikova (NPI ASCR)

Acoplanarity?

ALICE@ LHC 2.76 TeV

Future large-angle jet deflection studies may provide a direct probe of the nature of the quasi-particles in hot QCD matter.

$Low-p_{T}\ trigger:\ broadening\ with\ centrality$

Strange particle production in jets

Baryon/meson enhancement in p-Pb and Pb-Pb relative to pp collisions ALICE, PLB 728 (2014) 25, PLB 736 (2014) 196

High multiplicity p–Pb and Pb–Pb collisions have many similarities (see later) including also an enhanced p/π and Λ/K^0_s ratio

What is physics origin of this enhancement?

- radial flow
- coalescence/recombination vs fragmentation

Measure B/M ratios in jets and compare to that in bulk ...

Strange particle production in jets

J. Bielcikova (NPI ASCR)

J. Otwinovski (ALICE), Thu 15:40 VOs in PYTHIA

inclusive

in jets (R=0.3)

 Λ/K_{s}^{0} ratio in charged jets in p-Pb and Pb-Pb significantly lower than inclusive and pp

Jet composition is not influenced by the enhanced baryon/meson production in the bulk.

Cold nuclear matter effects on particle and jet production

Modification of particle and jet production in p-Pb collisions ?

- single particle R_{pPb} : tension at high p_T between ALICE and ATLAS/CMS
- jet fragmentation: ATLAS observed modification in pPb

At the same time inclusive jet production is not modified in pPb, agreement across experiments.

Is it in the pp @ 5 TeV reference?

Note: no measured pp reference at 5 TeV exists, different interpolations used by individual experiments.

CMS does not observe modification of jet fragmentation in pPb collisions in contrast to ATLAS.

Is it in the pp @ 5 TeV reference?

Note: no measured pp reference at 5 TeV exists, different interpolations used by individual experiment.

CMS does not observe modification of jet fragmentation in pPb collisions in contrast to ATLAS.

Ridge

The ridge phenomenon ...

J. Bielcikova (NPI ASCR)

Alver, Roland, PRC81 (2010) 054905

3+1D viscous hydrodynamics

Schenke, Jeon, Gale, PRL 106 (2011) 042301

Additional near-side ($\Delta \phi$) correlation in pseudorapidity ($\Delta \eta$) observed in central Au+Au collisions at RHIC in 2004.

Many physics scenarios have been suggested. The near-side ridge probably originates from initial state fluctuations, which give a rise to a new "triangular flow" (v_3).

Collectivity in small systems: the LHC ridges

Ridge persists in 13 TeV pp collisions

Very similar ridge properties at 7 and 13 TeV! Looking forward to see the " v_n " study and more precision data!

p-Pb ridge present at forward rapidity

Correlations of charged particles in forward direction: $2 < \eta < 4.9$

M. Meissner (LHCb) Thu 11:50

0

 $1.0 < p_{T} < 2.0 \text{ GeV/c}$

Activity bin V

C_{ZYAM}=1.64 (p+Pb)

 $C_{ZYAM} = 1.54 (Pb+p)$

Δ¢

p-Pb ridges extend to large rapidities

ALICE, p-Pb $\sqrt{s_{NN}}$ =5.02 TeV, muon-tracklet correlations with 0.5 < p_T < 1 GeV/c (ALICE), Thu 16:50 central peripheral ALICE, arXiv: 1506.08032 0-20% 60-100% 0.56 2.36 (iad-1, 100 (rad-1, (_2.34 2.32 2.30 ↓ 2.30 no ridge 0.50 2.28 -20 1 (rad) 3 -3 U AQ (rao) -3 ridge **Double ridge extends** 1 over 10 units of rapidity.) ject onto $\Delta \phi$, $\Im_{0.12}^{\circ}$ calculate "v₂" $\Im_{0.08}^{\circ}$ (0-20%)- (60-100%) ALICE Data, Pb-going 2 ridges Data, p-going p-Pb \s_{NN} = 5.02 TeV project onto $\Delta \phi$, AMPT, Pb-going V0S: (0-20%)-(60-100%) AMPT, p-going 1.81 (1.80 1.80 1.79 0.06 1.77 0.04 -2 Ap (rad) 3 0.02 -3 Δ_{n} _1 ⁰ 0.5 2.5 3.5 1.5 p_{\perp} (GeV/c)

J.F. Grosse-Oetringhaus

Evidence for collectivity in p-Pb?

D. Devetak (CMS) Thu 16:30

Mass ordering in v₂ resembling hydro picture observed earlier at low p_T in p, π and K by ALICE.

ALICE: PLB 726 (2013) 164

It is now confirmed by the CMS data for Λ and K^0_s .

Evidence for collectivity in p-Pb?

D. Devetak (CMS) Thu 16:30

Mass ordering in v₂ resembling hydro picture observed earlier at low p_T in p, π and K by ALICE.

ALICE: PLB 726 (2013) 164

It is now confirmed by the CMS data for Λ and K^0_s .

Multiparticle correlations (4-8) as well as Lee-Yang-Zero studies give consistent "v₂" values. Proof of collectivity!

Can data from RHIC bring further insights?

Evidence for ridge in d+Au and ³He+Au collisions at 0.2 TeV at RHIC: non-zero v_2 , particle mass ordering

Can data from RHIC bring further insights?

Evidence for ridge in d+Au and ³He+Au collisions at 0.2 TeV at RHIC: non-zero v_2 , particle mass ordering

Summary

 wealth of new data on jets and correlations from Run 1 at the LHC as well as from RHIC experiments came since EPS-HEP 2013

(my apologies, it was not possible to show all of them today)

jets in A+A collisions: measurements of inclusive jet production are now accompanied with important information on several jet structure observables which should improve our understanding of the hot and dense matter

high-multiplicity p+p and p+Pb collisions: ridge phenomenon quantified in a great detail, but satisfactory theoretical understanding across collision systems and energies missing

for the EPS-HEP conference: ridge measurements extended to pp @ 13 TeV and forward rapidities in p+Pb

 looking forward to Run2 data at the LHC as well as high statistics runs at RHIC to pin down medium properties and possible collective effects in small collision systems !

BACKUP slides

J. Bielcikova (NPI ASCR)

RHIC BES: charged particle R_{CP}

around $Vs_{NN} = 27-39$ GeV turning point: unquenched->quenched particle production

³He+Au vs models

Full jet suppression in Pb-Pb collisions

Phys.Lett. B746 (2015) 1, arXiv:1502.01689

- well-established models: realistic collision geometry, initial state conditions, hadronization
- both use a fit to hadron R_{AA} to tune the free parameters within the model

Both models agree well with data, but YaJEM shows a slightly steeper increase with p_T

→ Jet R_{AA}, vs event plane to pin down the path-length dependence of jet quenching J. Bielcikova (NPI ASCR) and to differentiate models

ALICE: Charged jets in p-Pb arXiv:1503.00681

spectra:

agreement with boosted NLO pQCD (POWHEG+PYTHIA8) using nPDFs (CTEQ6.6+EPS09)

σ(R=0.2)/σ(R=0.4):

jet energy redistribution? No, p-Pb compatible with pp at 7 TeV, PYTHIA and POWHEG

R_{pPb}:

within uncertainties no modification of charged jet spectra observed relative to pp

No indication of cold nuclear matter modification of jet production in MB data.

Multiplicity dependence of charged jets in p-Pb

N_{coll} from Pb-side estimator

Nuclear modification factor: RHIC vs LHC

Path length effects on jet production

FINISH Sensitivity of different observable A, Dijet Trigger

Renk, Eskola, PRC 75, 054910 (2007)

T. Renk, YaJEM

Surface bias dependence:

- single hadron and jet-hadron observables: strong surface bias
- di-hadron correlations: show less
- γ, Z- triggered: offer unbiased mea

T. Renk, PRC 85, 064908 (2012) **RHIC** *T. Renk, PRC 87,* 024905 (2013)

YaJEM, LHC 2+1d hydro

x [fm]

Jet-track correlations in Pb+Pb

Present and future HI machines

Hunting the collectivity in pPb ...

ATLAS: PRC 90 (2014) 044906

J. Bielcikova (NPI ASCR)

Non-zero Fourier coefficients v_1 - v_4 measured in p-Pb collisions.

What is their relation to those measured in Pb-Pb?

Apply a scale factor K = 1.25 to account for the $< p_T >$ difference in both systems

Basar, Teaney, arXiv:1312.6770

Similarity of the scaled $v_n(p_T/K)$ in p-Pb and v_n in Pb-Pb indicates a similar origin of the anisotropy in both systems.

γ -hadron correlations

- γ-jet a "golden probe" of parton energy loss in the medium
- produced in Compton scattering

 $q+g \rightarrow q+\gamma$

- photons do not interact strongly
- precise measurement of the in-medium modification of fragmentation function

$$I_{AA} = Yield(A+A)/Yield(p+p)$$

The recoil jet is modified: softening of recoil jet in central Au+Au collisions at RHIC.

γ -hadron correlations

Where did the energy go?

Look into different cones away from the trigger photon!

at large angles.

J. Bielcikova (NPI ASCR)

J. Bielcikova (NPI ASCR)

Modification of jet fragmentation in Pb-Pb

ATLAS: PLB 739 (2014) 320-342, CMS: PRC 90 (2014) 024908

enhancement for z<0.04 \rightarrow suppression at z = 0.04-0.2 \rightarrow enhancement for z>0.2

I most pronounced in central Pb-Pb collisions

Where did the energy go?

Does the picture change at RHIC energy?

A_J measurement at RHIC energy

2. Rerun jet-finding algorithm with low constituent p_T cut

Anti-kt R=0.4 p^{leading}>20 GeV/c, p^{subleading}>10 GeV/c 3. Do jet matching and calculate "matched" |AJ| with constituent pT,cut>0.2 GeV/c

A_J measurement at RHIC energy

Study broadening R=0.4

 $p_{T}^{Cut} > 0.2 \text{ GeV/}c$

- Lost energy remerges in low p_T particles
- Decreasing $p_T = 2 \rightarrow 1 \rightarrow 0.2 \text{ GeV}/c$ dijet is regaining balance
- For the same R=0.4 and jet p_T selection, balance can not be restored within R=0.2

\rightarrow broadening

 p_T^{cut} = 1 GeV/c not sufficient to restore balance → signs of jet softening between 1 and 2 GeV/c

How many particles carry the missing energy?

hemisphere N_{ch} difference:

J. BIEICIKOVA (NPI ASCR)

leading

 for large A_J and central Pb-Pb collisions there are about 14 extra particles with p_T>0.5 GeV/c in the subleading jet hemisphere

