Detector R&D for the High Luminosity LHC

EPS conference, Vienna, July. 28, 2015
D. Contardo - IPN Lyon CNRS/IN2P3

Overview of the LHC upgrade program, high luminosity challenges
to the experiments and upgrade designs, major R&D examples



New schedule for Long Shutdowns and
Accelerator perspective for luminosity
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* “Ultimate luminosity” is a design specification - effective integrated luminosity
is not limited by instantaneous luminosity - potentially 30% more fb!/year



Main considerations for detector upgrades

Much higher rates 2 new readout electronics - digitization and data
compression on detector - full data transfer to the control room at 40 MHz
crossing frequency (as much as possible)

Much more complex events (collision Pile-Up) = increased granularity to
maintain hardware Trigger acceptance (low energy thresholds), and online

and offline object reconstruction performance

Much higher radiation doses and longer operation time > careful evaluation
of radiation tolerance and longevity of detectors - new technologies



ATLAS and CMS upgrade in Phase-| (LS1 to LS2) to prepare for
twice more peak luminosity than in original design

o Add one measurement in Pixel detectors closer to the collision point to
preserve track finding efficiency and improve resolution

o Increase calorimeter granularity in Trigger to preserves thresholds

o Complete muon systems in End-Caps to preserve Trigger coverage

o Increase bandwidth and processing power in Trigger/DAQ




LHCb will upgrade already in LS2 and collect 50 fb-1 5
at 2 x 1033cm-?s-tinruns 3 and 4

Software trigger operating at 40 MHz for 20 kHz of p-p events registered
- Trigger/DAQ throughput at 4 TB/s (= ATLAS/CMS at HL-LHC)

New electronics for all detectors and
other major innovations:

* New Vertex Locator with pixels at
5.1 mm from beam - 55 x 55 pum?
pixels - fluence of 8 x 101> neq/cm2 -
2 Tbit/s data rate - light mechanics
with micro-channels cooling

* Tracking with scintillating fibers
(10000 km) and cooled SiPMs (-40°)




LHCb Scintillating Fiber Tracker R&D

3 stations, each 2.5% X/XO0 - 4 plans (X-U-V-X) with + 5° stereo angle

- 50-75 um resolution

e 3 Mfibers ® 250 um x 2.5 m (10 000 km)
— Development for 3 Mrad in inner region
—> High precision assembly of fiber mats
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 Readout with 128 SiPM array 250 um pitch
— -40°C cooling to sustain 1.2:10%? neq. /cm2
- Work to improve Photo-Detection Efficiency
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New electronics for all detectors and

other major innovations:

ALICE will upgrade already in LS2 to integrate
~10nbtat6x 102 cm2stlinruns3and4

Register all Pb-Pb collisions = 50 kHz = Fast online calibration and
reconstruction with FPGAs and GPUs for data compression, from
1 TBps to 50 GBps storage (storage = ATLAS/CMS at HL-LHC)

New Internal Tracker System using
Monolithic Active Pixels - 12.5 Gpix.
30 x 30 um? - ultra-light mechanics

Use Micro-Pattern Gas Detectors for
TPC readout (GEM and/or Micro-
Megas)

Trigger timing = 20 ps resolution
quartz Cerenkov with MCP-PMT
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ALICE Inner Tracker System R&D 8

o Ultra light system to improve IP resolution by a factor = 3
* 7 layers of Monolithic Active Pixels
= 10m? with 12.5 Gpix

— 3inner layer each 0.3% X/X0 from 20 to 40 mm
— 4 outer layers of 1% X/X0 up to 400 mm
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o MAPs Technology

* Tower Jazz Technology (0.18 um)
Thin sensors = 50 um
Pixels = 30 x 30 pm? T e
Radiation tolerance 10! neq/cm? L A Ay,
Binary readout




ATLAS & CMS Phase-Il: radiation & particle rate challenge

Substantial effort to simulate irradiations and damage in current detectors
- Both experiments replace Trackers
- CMS replaces End-Cap calorimeters
- ATLAS investigates replacement of LAr Forward Calorimeter (FCAL)
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ATLAS & CMS Phase-ll: Pile-Up challenge

Mean number of p-p collisions (PU) will reach = 140 and 200 at luminosities

respectively leveled at 5 and 7.5 x 1034 cm?s
- Tracking system is crucial to identify vertex of hard scatter of interest and
associate proper charged tracks
- Out Of Time PU from signal developments 2 25 ns crossing interval, typically
calorimeters, needs to be mitigated with proper pulse shaping/sampling
- Complexity of events also imposes severe constraints on software and
computing
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ATLAS and CMS Silicon Tracker main features

ATLAS CMS
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o High granularity (= 4 to 6 x present Trackers):
— Pixel sizes in range = 50 x 50 - 25 x 100 um? - first layer(s) replaceable
— Strip pitch ~ 75 to 90 um and length ~ 2.5 to 5 cm length
— Imposes lower power consumption for front-end electronics

o Lightness, an opportunity to improve resolution & reduce y-conversions:

o Design, new materials - new cooling (CO,) - DC/DC, serial powering

11



r(m)

12

ATLAS and CMS Silicon Tracker main features

ATLAS CMS
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o Implementation of tracking information in hardware trigger
— Improves lepton energy assignment and isolation, allows association to vertex
for PU rejection in multiple object triggers - condition to maintain low energy
Trigger thresholds - different concepts in ATLAS and CMS

o Extension of coverage fromn=2.4ton=4
— Better matching with calorimeter coverage to improve Jet ID and MET tails
and resolution, crucial for VBF and VBS jet tagging



ATLAS Calorimeter upgrades main features

o ATLAS LAr calorimeters & Scint. Tile srposome
need new readout electronics - full
granularity at hardware Trigger

LAr electromagnetic

o Forward CALorimeter (3 <n <5)
lon space charge effect (due to peak
luminosity) is investigated - option to
replace with sFCAL - lower gap = 100 pm
and x 2 better segmentationinn & O©, or
add mini-FCAL in front of current FCAL

o Thin High Granularity Si/W(Cu) Calo.
(2.5 < n<4)is being investigated to
further mitigate PU, particularly through
precise timing measurement (< 50 ps)
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CMS Calorimeter upgrades main features

o Barrel EM Calorimeter

need new readout - full granularity at ENVELOPE, sy
hardware Trigger and lower T = 8°C

o New High Granularity Calorimeter | —

with 4D shower measurement

— Electromagnetic 28 layers of Si-W/Cu HELLLL
— Front Hadronic 12 layers of Si/Brass  — LU i

- R&D synergies with Tracker
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Hexagonal sensors - 3 active thicknesses
depending on radius 100/200/300 pm -
0.5 - 1 cm? pads for 100 - 200/300 um
EE: 380 m? - 4.3 Mch - 13.9k modules

FG: 209 m? - 1.8 Mch - 7.6k modules
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CMS Calorimeter upgrades main features

o Barrel EM Calorimeter
need new readout - full granularity at ENVELOPE
hardware Trigger and lower T = 8°C

o New High Granularity Calorimeter
with 4D shower measurement
— Electromagnetic 28 layers of Si-W/Cu
— Front Hadronic 12 layers of Si/Brass

—> R&D synergies with Tracker o |

o Back Hadronic Scintillator tiles/Brass

— Doubled transverse granularity - 2 depths

SPLICE

Clear fiber-WLS fiber

- R&D to sustain 5 Mrad

— Finger concept reduce light path to WLS

WLS fibers

— Doubly-doped plastic scintillator
x 2 light collection after irradiation

Tile (Scintillator SCSN-81)

Quarts fibers

Tile 27

| (8 fingers tiles option)




. ATLAS
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ATLAS and CMS Muon upgrades main features

Muon systems are expected to sustain 3000 fb™! = several tests in preparation at
GIF++ to confirm and particularly for R&D in compliant “green” gas mixtures

Higher rates = increase granularity and also replace readout electronics to
comply with Trigger specifications

Extended coverage for p-tagging to n < 4 (in conjunction with Tracker extension)

Technologies are mature enough to install during LS2 with already substantial
benefit to maintain Trigger acceptance during Run 3

CMS

SEED SR SED SED SED SR SN, —

Station 1
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ATLAS and CMS Muon upgrades main features

ATLAS technologies CMS technologies

o New Small Wheels o Triple GEM 140 micron pitch, single
small Thin Gap Chambers - shorter strips mask and new assembly technique
2 cm =2 3.2 mm (3mm pitch), thinnergap o iRPC’s for few kHz/cm? - low resistivity
and Micro-Megas (0.5 mm pitch) Bakelite or Glass - multi-gap/thinner gap

o And small Monitoring Drift Tubes and electrodes - higher gain in Front-
reduced diameter 30 mm & 200 Hz/cm? End electronics - good time resolution

- 15 mm & 2 kHz/cm? depending on number of gaps = 100 ps
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ATLAS and CMS Trigger upgrades
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CMS reconstructs tracks with
P, =2 2 GeV at 40 MHz

ATLAS reconstructs tracks
with P, 2 1 GeV at 1 MHz in
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<— Full Tracker data readout —
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R&D on Associative Memories for track reconstruction - High processing
power FPGA and bandwidth boards - High bandwidth back plan crates xTCA




Silicon sensors R&D - RD50

Higher radiation tolerance with shorter charge collection path
— Larger collection efficiency, at low voltage and low leakage current
- Improved bulk material for limited annealing effects
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All strip Tracker and CMS Si/W calorimeter:

— n-in-p technology selected - qualifying vendors for
final specifications: physically thin versus deep diffusion HV

A = 4000 fbtat 20 cm 15t strip layer

= 4000 fblat 7 cm 2" pixel layer

/' and also = LHCb pixels

= 3000 fbtat 3 cm 15t pixel layer
= 5000 fb* Si/W calorimeter n = 3
confirmed with neutron irradiation
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-
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n" pixel (0V) Guard Rings
p-substrate

p

- Float Zone versus Magnetic Czochralski material, wafer size 6” or 8”...
— = 1000 m? of Silicon sensors (including CMS Si/W calorimeter)



Silicon sensors R&D - RD50 ”

For fluence at 2 x 10%® neg/cm?in 1%t pixel layer, or up to 10!’ neq/cm? in
Si/W calorimeter at n = 4 the 3D sensors technology is an alternative
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HR/HV CMOS R&D - RD50

R&D in radiation tolerant High Resistivity/High Voltage (HR/HV) CMOS
Electronics in deep n-well collection electrode
to allow depletion voltage (= 100 V) - promising -
results on charge collection efficiency up to J
10'°> neg/cm? - several technical developments

still needed on tight time scale for HL-LHC

P-aubstrate



Front End ASICs R&D

o Several (=20) ASIC chips of increased complexity developed for the 4
experiments in different technologies - already many prototypes

o R&D focuses on new TSMC technology 130 nm and 65 nm to validate
rad. tol. & develop common IP blocks - also connected development of
Trough Silicon Via and DC/DC and serial powering techniques

RD53 ATLAS/CMS Pixel ASIC
TSMC 65 nm

RD53 has developed layout rules to ensure radiation tolerance at 500 Mrad

Smaller Pixel size

Larger chips (2 2 x 2 cm?)

Hit rates up = 2-3 GHz/cm?

Rad. Tol. up to 1 Grad, 10'® n/cm?
High trigger rate and latency up to 1
MHz and = 10 ps

Low power budget <1 W/cm?

Low noise = 1000 e"

CMS HGCal FE ASIC
TSMC 130 nm

Shaping = 15 ns - noise = 2000 e-
(after 3000 fb?)

Low power £ 10 mW/ch

Dynamic range 10 pC - 10 bit ADC <
100 fC and Time over Threshold
(ToT) >80 fC

Channel calibration better than 1%
ToT time resolution = 50 ps

in 65 nm TSMC, more work is needed for 1 Grad (1%t pixel layer) where
behavior may depend on operation history (bias, temperature) and annealing
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Data transfer R&D

All experiments (det.) use the GigBitTranciever (GBT) & Versatile Link
developed through CERN
- R&D for low power GBT ASIC (= 0.5 W) in 65 nm technology with 10 Gb/s data
transmission, particularly important for tracker where BW needs are high due to
new Trigger capability and higher Trigger rates
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LP-GBT &
optical VTRx
(3.2 Gbps)

assembles data packet and sends to LP-GE

Radiation hardness of the Versatile Link is insufficient for inner pixels
—> Crucial R&D on very light high BW electrical link before OL transfer (twinax cable)
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Cooling system R&D

Lower temperature needed to mitigate radiation damage in silicon devices

and also need of light cooling and “greener” systems
—> Two-Phase CO, cooling in ALTLAS/CMS/LHCb - R&D effort federated by CERN -

~

standard systems & common prototypes in perspective of = 50 kW and = -35° plants

Micro-channel cooling presents further advantages in material reduction &
thermal expansion matching - LHCb (VELO) are leading R&D

Micro channels 200x120pum

Connector,
/\‘ Sensor 200 um

ASIC 200 pm

Hybrid 320 pm

Glue 50pm 5 mm overhang
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Mechanical structures R&D

Light mechanical structure are crucial in Tracker for resolution and to
minimize secondary interaction and photon conversions

—> Several new materials or techniques (3D printing) investigated in all aspects
including radiation tolerance

support, carbon foam and
fiber plate foam and

Titanium pipes

SSA(x8) Strip Sensor

‘ Carbon Fiber

-mmm:l— S MRALE)

[ PrelaedsipSensor — — — — — ]
Cooling

Concentrator (x1)

CMS PS-module AICF frame

QA, assembly procedures, integration and environmental aspects need to
be addressed at an early stage to keep system simple and reliable
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Precise Timing devices R&D

Precise timing measurements to further mitigate PU effects is investigated
by ATLAS and CMS, particularly for neutral energy measured in forward
calorimeters

- Nominal collision time rms is = 160 ps - a time resolution of < 50 ps
would allow to reduce PU to an effective value similar to Phase-I

o Several concepts and technologies investigated
* Using shower max in calorimeter - specific layer in
front part of calorimeter - Pre-shower
* MCP-PMT - Ultra Fast Silicon Detector (LGAD) - High

Gain layer

: : LGAD °
Gain APDs - Micro-Megas - p——
o Clock distribution also a challenge for precision/stability = =
crystal ‘/
Mesh Screen (anode side) photocathode )
Output to Scope .~ O { hotoelegiron
~0_ v KaptouTape preamplification
- HV connected to ptn at one comer APD /
Grouad ~—, —— 4. Kapton 2 mﬂ)\lesh Sceen (calode i) wiicromesh —
AIJOS Substrate \ A P D avalanche MM

N\
Contact between screen and n+ side made by Ag epoxy thru hole in Kapton




Online - Offline - Computing R&D

CPU need for online/offline reconstruction and analyses is expected to be
roughly 30/80 times larger than for Run 2 at 140 PU

— Anticipating x 8 gain at constant resources (25%/year improvement) another
factor of = 4/10 gain (online/offline) would be needed at 140 PU

R&D focuses on:

o Low power ARM processors, high performance GPU systems...
— Develop multi-threaded code - data oriented for memory usage

o More broadly distributed resources to access opportunistic computing
— Develop portable kernels of reconstruction and simulation code
— Use cloud provisioning tools

o More efficient use of storage and data distribution
— Develop dynamic data placement to use remote services through

Content Delivery Network techniques
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Concluding remarks

The LHC at 300 fb-tand then at 3000 fbtis the unique facility for
indirect and direct search of New Physics in the next decades:

e Higgs coupling precision - rare processes: H to pu, Zy - HH - VV scattering —

FCNC - B,/B4 to pp ...
* Discoveryin Run 2/37?
 Extended phase space
& mass reach coverage

—> It is important to support
ATLAS and CMS upgrade
design optimizations with
full simulation of physics
benchmarks
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Concluding remarks

Experiments are preparing upgrades already since several years

Many progress have been made in developing new techniques to
meet the High Luminosity challenges, nevertheless we still have a
lot of work ahead of us on a tight and busy time scale

Upgrades must be cost-effective, but to ensure success they need
to preserve: margins in performance, flexibility with respect to
operating conditions, and safety with redundant systems

Upgrades need our attention for a bright future at the HL-LHC
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Additional information
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HL-LHC upgrades general documentation

ECFA HL-LHC Experiments Workshops in 2013 and 2014
= physics goals and performance reach - accelerator upgrades and experiment
interface - experiments upgrade scope, conceptual design & technology R&D

o Indico Agendas:
— https://indico.cern.ch/event/252045/
— https://indico.cern.ch/event/315626/
o ECFA reports
—  https://cds.cern.ch/record/1631032
— https://cds.cern.ch/record/1983664?In=fr
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Accelerator Upgrades for HL-LHC

o Well defined baseline:
— 1200 m of new magnets around the interaction region to improve the beam
focus (B* = 10-15 cm) and tune it along the fill to level the luminosity profile
— Crab Cavities to limit collision density along beam (compensate crossing angle)
o And options:
—  Wire Compensation technique to mitigate long range beam-beam interactions
— Crab Cavities transverse (kissing) scheme to further lower collision density if
beneficial to experiments

HL-LHC “baseline” = 1.2 collisions /mm

,’"-) RN
crabbing angle / ., s o
HL-LHC “Crab Kisging’t = 0\6 collisions/mm

06 -

0: crossing angle
Z

LHC 2012

202 EO1 0.1 02

Beam Crossings with CRAB cavities Vertex density vs z at 5 x 1034 Hz/cm?



ATLAS upgrades for Phase 2 >

Trigger/DAQ
* 1 MHz Tracker readout in Region of Interest after 6 us latency
 Full read-out at = 400 kHz after = 30 us latency

 Register up to = 10 kHz after computing selection (30 GB/s)

Muon systems
° 1 7 ]
New electronics —
* Some chambers replaced
to improve resolution /
* Muon taggington =«

/]
A

\

Forward calorimeter
* New sFCAL with x4
granularity
* 4D Si/W to cover 2.45n < 4
New Tracker
Liquid Argon and Tile calorimeter * Rad. tolerant, high granularity and light
* New electronics * Extend coverageton =4
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CMS upgrades for Phase-ll

Trigger/DAQ Barrel Electromagnetic calorimeter
* Implement track information at 40 MHz * New electronics

* Full readout at = 750 kHz after 12.5 pus * Lower operating temperature (8°)
* Register = 7.5 kHz after computing selection

—

(40 GB/s) y : Muon systems

* New DT electronics

» Some CSC electronics

' Complete RPC coverage in
region1.5<n<24

\ /Muon tagging 2.4<n<3

SN
>, Rl N
v

w Luminosity and
ditions monitoring

New Endcap Calorimeters Q.
e Rad. tolerant - high granul 3%t}
* 4D shower measurement cap

(including precise timing < 50 ps)

New Tracker
with Si/W and Si/Brass sections

* Rad. tolerant, high granularity and light
* 40 MHz selective readout for hardware trigger
e Extend coverageto n = 3.8
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ALICE upgrades in LS2

New Inner Tracking System (ITS)
e improved pointing precision Muon Forwa_urd Tracker (MFT)
* |ess material -> thinnest tracker at * new Si tracker

the LHC \ * Improved MUON pointing precision

MUON ARM

Time Projection Chamber (TPC) . izgggstous
* New Micropattern gas electronics

detector technology
* continuous readout

New Central Trigger
Processor (CTP)

Data Acquisition (DAQ)/
High Level Trigger (HLT)
* new architecture

// /4
* on line tracking & data

compression /

* 50kHz Pbb event rate New Trlgger
Detectors (FIT)

c) by St. Rossegger
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LHCb upgrades in LS2

All subdetectors are read out at 40 MHz

RICH 1 redesigned; new photodetectors M4 M3

5m for‘RICH 1 and RICH 2

. l _Magnet \ RICH? ECA
| . '. SciFi ===

Replacement of full =
tracking system

1 1

Calorimetery and muons:
- Redundant components of system removed,;

Sm

new electronics added; more shielding included




