Recent progress on the gauge theory sector of F-theory

Denis Klevers

Motivation
Why F-theory?

F-theory

1. describes **broad class** of **non-perturbative vacua** of string theory,

2. can produce **GUT models** with **promising particle physics & cosmology**:
 - **features not accessible in perturbative II strings** (E_6 to E_8, $10\times10\times5$, ...).
 - **Local**: [Donagi, Wijnholt; Beasley, Heckman, Vafa; ... many works]
 - **Global**: [Blumenhagen, Grimm, Jurke, Weigand; Marsano, Saulina, Schäfer-Nameki; ... many works]

3. engineers **effective field theories** coupled to quantum gravity:

 ![Diagram](Calabi-Yau (CY) geometry - Geometry - Physics - Effective field theories)

 - **Geometry provides tools to control over non-perturbative physics.**
Goal of this talk

Goal: Use F-theory to study gauge theory sectors in $N=1$ SUGRA theories.

Problem: geometry / physics dictionary incomplete

- Well-understood for non-Abelian groups & simple matter representations.
- Less known about $U(1)$'s, discrete gauge groups & more complicated matter representations.

Today: develop some missing pieces

- Arithmetic of CY-elliptic fibrations
- Enlarge matter sector: new Abelian & non-Abelian representations
1) What is an F-theory vacuum?
1. **Base** B of X
 \Rightarrow part of **physical space-time** of string theory

2. **Torus fiber** T^2 of X
 \Rightarrow **book-keeping** device for Type IIB complexified string coupling $\tau \equiv C_0 + ig_s^{-1}$
Singularities of CY manifolds & physics

Singularities of T^2-fibration of Calabi-Yau X over base B ↔ globally well-defined setup of intersecting $(p,q)7$-branes

Gauge theory in 8D: co-dim. one singularity (7-branes)

Matter in 6D: co-dim. two sing. (intersec. 7-branes)

4D Yukawa: co-dim three
$pt = S \cap S' \cap S''$

[Katz, Vafa]
Singularities of CY manifolds & physics

Singularities of T^2-fibration of Calabi-Yau X over base B ↔ globally well-defined setup of intersecting (p,q)7-branes

Gauge theory in 8D: co-dim. one singularity (7-branes)

obtain only non-Abelian groups, no U(1)'s

[Johnson, Tate, Vafa, Morrison, Vafa; Bershadsky, Intriligator, Kachru, Morrison, Sadov, Vafa]

Matter in 6D: co-dim. two sing. (intersec. 7-branes)

4D Yukawa: co-dim three

$pt = S \cap S' \cap S''$
2) Global F-theory compactifications with U(1) symmetries
U(1)’s in F-theory & the Mordell-Weil group

- U(1)’s arise by KK-reduction of M-theory three-form $C_3 \supset A^m \omega_m$.
- Not from codimension one singularities: otherwise again non-Abelian groups.

$(1,1)$-form $\omega_m \leftrightarrow$ rational section of X [Morrison, Vafa II]

Rational section = map $\hat{s}_Q : B \to X$ induced by rational point Q on $T^2 = \text{elliptic curve } E$.

- Rational points form Abelian group: Mordell-Weil (MW) group of rational sections of X
- \hat{s}_Q gives rise to a second copy of B in X: new divisor B_Q in X

$(1,1)$-form ω_m constructed from divisor B_Q.
U(1)’s in F-theory & the Mordell-Weil group

- U(1)’s arise by KK-reduction of M-theory three-form $C_3 \supset A^m \omega_m$.
- Not from codimension one singularities: otherwise again non-Abelian groups.

<table>
<thead>
<tr>
<th>(1,1)-form ω_m</th>
<th>rational section of X</th>
</tr>
</thead>
</table>

Rational section = map $\hat{s}_Q : B \rightarrow X$ induced by rational point Q on $T^2 = $ elliptic curve E.

- Rational points form Abelian group: **Mordell-Weil (MW) group** of rational sections of X
- \hat{s}_Q gives rise to a second copy of B in X: new divisor B_Q in X

(1,1)-form ω_m constructed from divisor B_Q.
Systematic construction of F-theory vacua with U(1)’s

- n rational sections of CY-manifold $X \rightarrow$ F-theory with $U(1)^n$ gauge group
- Deligne: Systematic construction of CY X with n rational sections

![elliptic curve E embedded into $W\mathbb{P}^m$]

Examples:

one $U(1)$: elliptic curve E is generic CY in $\text{Bl}_1\mathbb{P}^2(1,1,2)$ [Morrison,Park]

\rightarrow Construction yields only matter with $U(1)$-charge $q=2$,

\rightarrow Extension to models with $q=3$ matter: E is cubic CY in dP_1. [DK, Mayorga-Pena, Oehlmann, Piragua, Reuter]
Systematic construction of F-theory vacua with U(1)’s

\(U(1)^2: \) \(E \) is non-generic cubic in \(\mathbb{P}^2 \)

1. **generic CY in \(dP_2 \):** has restricted matter spectrum with \(U(1)^2 \) charges \((q_1,q_2)\)

 \[\text{toric } dP_2: \]

 \[
 u f_2(u, v, w) + \prod_{i=1}^{3} (a_i v + b_i w) = 0
 \]

 \[
 f_2 = s_1 u^2 + s_2 uv + s_3 v^2 + s_5 uw + s_6 vw + s_8 w^2
 \]

2. **generalization:** CY with \(U(1)^2 \) has fully symmetric matter spectrum

 \[\text{non-toric model:} \]

 \[
 u f_2(u, v, w) + \prod_{i=1}^{3} (a_i v + b_i w) = 0
 \]

 All spectra automatically anomaly-free.
New realizations of matter singularities

“UnHiggs” \(U(1)^2 \rightarrow SU(3) \)

- \((q_1,q_2) = (2,2)\) matter becomes symmetric representation 6 of \(SU(3) \): first concrete construction in global F-theory.

- related to new algebraic description of \(I_3^s \) singularities over divisor \(T \)

locus of 6 matter:
ordinary double point
New realizations of matter singularities
[Cvetic,DK,Piragua,Taylor]

“UnHiggs” $U(1)^2 \rightarrow SU(3)$

• $(q_1,q_2)=(2,2)$ matter becomes symmetric representation 6 of $SU(3)$: first concrete construction in global F-theory.

• related to new algebraic description of I_3^s singularities over divisor T

locus of 6 matter: ordinary double point
New realizations of matter singularities

“UnHiggs” $U(1)^2 \rightarrow SU(3)$

* $(q_1, q_2) = (2, 2)$ matter becomes symmetric representation 6 of $SU(3)$: first concrete construction in global F-theory.

* related to new algebraic description of I_3^s singularities over divisor T

locus of 6 matter: ordinary double point
3) Global F-theory compactifications with discrete gauge groups
F-theory with discrete gauge groups

Torus fibration X has no sections, only n-section: genus-one fibration

\Rightarrow X has n rational sections “locally” but they are interchanged globally.

\Rightarrow only sum well-defined globally

$$Q^{(n)} = Q_1 + \ldots + Q_n$$

Obstruction to gluing points together globally: Tate-Shafarevich (TS) group visible in physics as discrete gauge group of F-theory.

[DeBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison,Sethi]
F-theory with discrete gauge groups

Torus fibration X has has no sections, only n-section: genus-one fibration

\Rightarrow X has n rational sections “locally” but they are interchanged globally.

\Rightarrow only sum well-defined globally

$$Q^{(n)} = Q_1 + \ldots + Q_n$$

Obstruction to gluing points together globally: Tate-Shafarevich (TS) group \Rightarrow visible in physics as discrete gauge group of F-theory.

[DeBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison,Sethi]
All known examples

F-theory vacua with \mathbb{Z}_n discrete gauge groups identified

- \mathbb{Z}_2 gauge group: $T^2 = \text{quartic in } \mathbb{P}^2(1,1,2)$
 \[\mathbb{Z}_2 \text{ and } (\text{SU}(2) \times \mathbb{Z}_4)/\mathbb{Z}_2 \]
 [Braun, Morrison; Morrison, Taylor Anderson, García-Etxebarria, Grimm, Keitel; DK, Mayorga-Pena, Oehlmann, Piragua, Reuter; García-Etxebarria, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand]

- $\mathbb{U}(1) \times \mathbb{Z}_2$ gauge group: $T^2 = \text{bi-quadric in } \mathbb{P}^1 \times \mathbb{P}^1$
 [DK, Mayorga-Pena, Oehlmann, Piragua, Reuter]

- \mathbb{Z}_3 discrete gauge group: $T^2 = \text{cubic in } \mathbb{P}^2$
 [DK, Mayorga-Pena, Oehlmann, Piragua, Reuter; Cvetič, Donagi, DK, Piragua, Poretschkin]

In all cases we have found

- matter carrying non-trivial \mathbb{Z}_n discrete charge,
- all gauge invariant Yukawas exist, including \mathbb{Z}_n selection rules.
4) Conclusions
Summary

- Systematic construction of F-theory vacua with $U(1)^n$ ($n \leq 3$):

 | Mordell-Weil group | U(1)’s |
 |

- Construction of F-theory vacua with \mathbb{Z}_n ($n \leq 4$) discrete gauge groups:

 | Tate-Shafarevich group | discrete gauge group |
 |

- New matter representations:

 \Rightarrow charge $q=3$ for one $U(1)$, new $U(1)^2$ models with up to charges $(2,2)$

 \Rightarrow matter with charges under discrete gauge group,

 \Rightarrow first concrete construction of symmetric representation of $SU(3)$.
Things I didn’t have time to talk about

Construction of $U(1)^3$: E is pencil of non-generic quadrics in $\mathbb{Bl}_4\mathbb{P}^4$. [Cvetic,DK,Piragua,Song]

Pheno applications: Use $U(1)$’s for construction of SM in F-theory

Construction in [Cvetič,DK,Mayorga-Pena,Oehlmann,Reuter]

- $U_Y(1)$ rational section
- SM non-Abelian gauge group $SU(3) \times SU(2)$ is automatically present
- add G_4-flux to generate 4D chirality following [Cvetic,Grassi,DK,Piragua]
- solve D3-brane tadpole

⇒ get 4D three-family Standard models in F-theory.

⇒ natural embedding into Pati-Salam & Trinification
Thank you