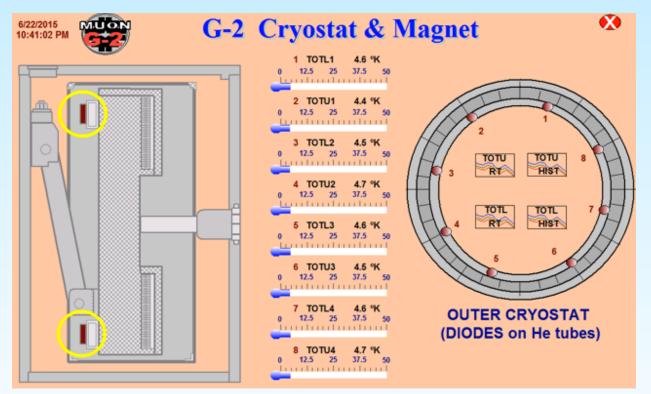

The New Muon g-2 experiment at Fermilab (E989)

G. Venanzoni (for the E989 Collaboration) LNF/INFN Frascati



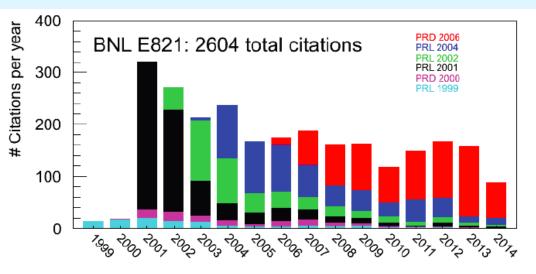
European Physical Society Conference on High Energy Physics 2015 22-29 July 2015 Vienna, Austria

June 2015 After 14 dormant years The RING is

And the **Power** is about to be turned ON

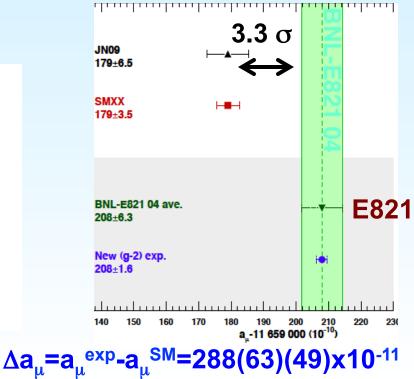
- Magnet has been energized to 20% of full current!
- Anticipate full power over next few days!

"... we confirmed that the resistance is 0.1 +- 0.5 micro-ohm, consistent with being superconducting ! " Hogan Nguyen, L2 Ring Team 6/23/2015

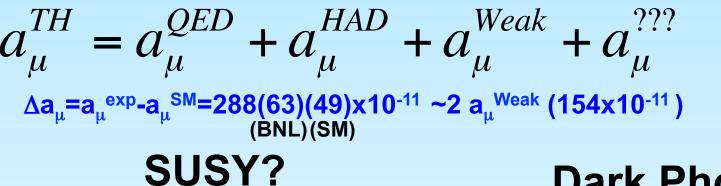

$(g-2)_{\mu}$: summary of present status

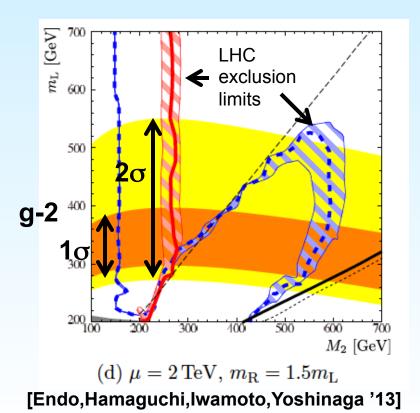
E821 experiment at BNL has generated enormous interest

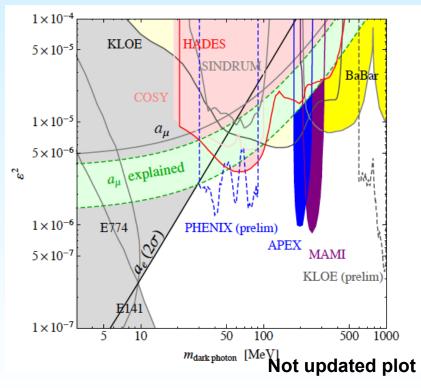
Tantalizing deviation with SM (persistent since>10 years) is $\sim 3\sigma$


Current discrepancy limited by experimental uncertainty (BNL)

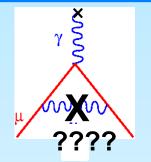
BNL E821 citations




>2600 citations



New Physics?


Dark Photons?

G. Venanzoni for the New Muon (g-2) Collaboration - EPS15, 24 July 2015

New Physics?

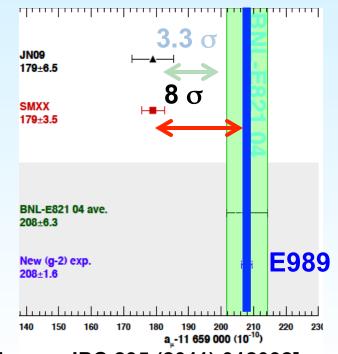
 $a_{\mu}^{TH} = a_{\mu}^{QED} + a_{\mu}^{HAD} + a_{\mu}^{Weak} + a_{\mu}^{???}$

Maybe an unknow "unknown" ?

In any case 3σ are not enough to claim a discovery.

We need a new (possible more) experiment with better precision!

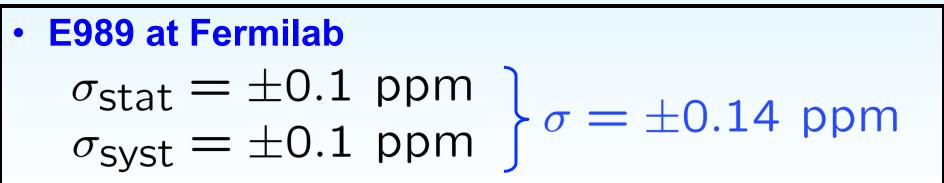
G. Venanzoni for the New Muon (g-2) Collaboration - EPS15, 24 July 2015


$(g-2)_{\mu}$: a new experiment at FNAL (E989)

- New experiment at FNAL (E989) at magic momentum, consolidated method. 20 x stat. w.r.t. E821.
 Relocate the BNL storage ring to FNAL.
 - $\rightarrow \delta a_{\mu} x4$ improvement (0.14ppm)
 - If the central value remains the same \Rightarrow 5-8 σ from SM* (enough to claim discovery of New Physics!)

*Depending on the progress on Theory

Thomas Blum; Achim Denig; Ivan Logashenko; Eduardo de Rafael; Lee oberts, B.; Thomas Teubner; Graziano Venanzoni (2013). "The Muon (g-2) heory Value: Present and Future". arXiv:1311.2198 & [hep-phr].



Alternative proposal at JPARC in progress [H. linuma JPC 295 (2011) 012032]

4 key elements for E989 at FNAL

- Consolidated method
- More muons (x20)
- Reduced systematics (ring and detector)
- New crew
- E821 at Brookhaven $\sigma_{stat} = \pm 0.46 \text{ ppm}$ $\sigma_{syst} = \pm 0.28 \text{ ppm}$ $\sigma = \pm 0.54 \text{ ppm}$

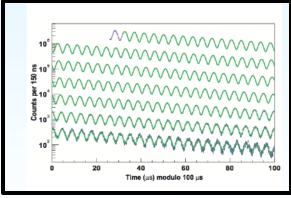
How to precisely measure g-2 in a storage ring

(1) Polarized muons

 $\nu \leftrightarrow \pi^+ \leftrightarrow \mu^+$

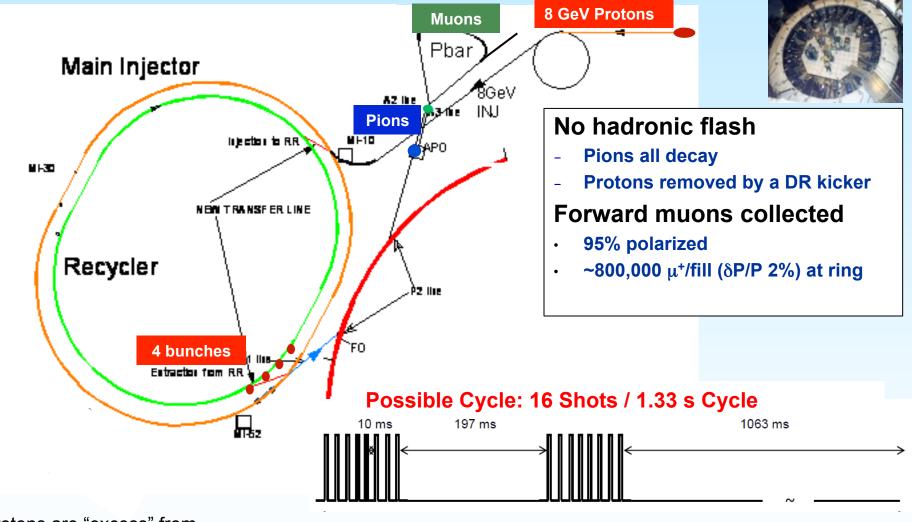
measure

~97% polarized for forward decays


(2) Precession proportional to (g-2)

 $(\omega_a) = \omega_{spin} - \omega_{cyclotron} = \left(\frac{g-2}{2}\right) \frac{eB}{mc}$ (3) P_u magic momentum = 3.094 GeV/c

$$\overline{\omega}_{a} = \frac{e}{mc} \left[a_{\mu} \overline{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \overline{\beta} \times \overline{E} \right]$$


E field doesn't affect muon spin when γ = 29.3

(4) Parity violation in the decay gives average spin direction $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu \longrightarrow \omega_a$

G. Venanzoni for the New Muon (g-2) Collaboration - EPS15, 24 July 2015

The FNAL beamline is very long so it provides a pure muon flux, to be complemented by a much better Kicker

All protons are "excess" from those used for NOvA ν Program

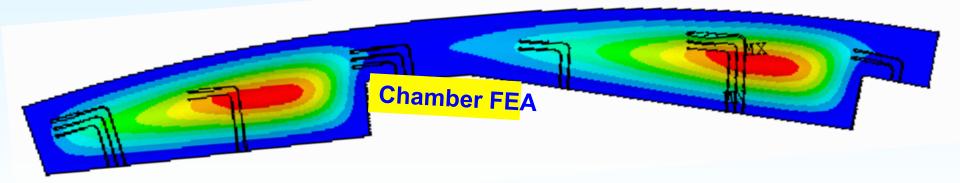
The New Muon Campus at FNAL is taking shape

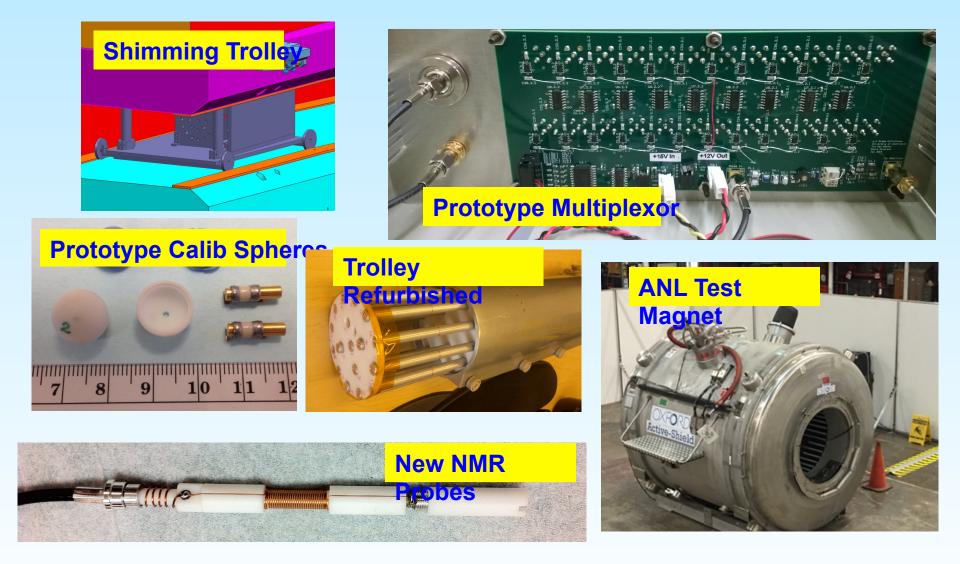
Last two years

- Moved ring from BNL two summers ago
- Started ring installation in new building last summer

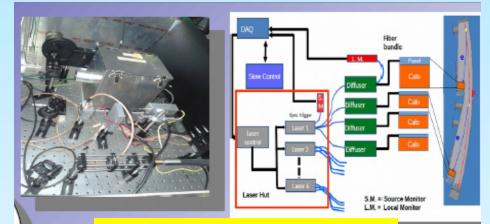
Major Installations

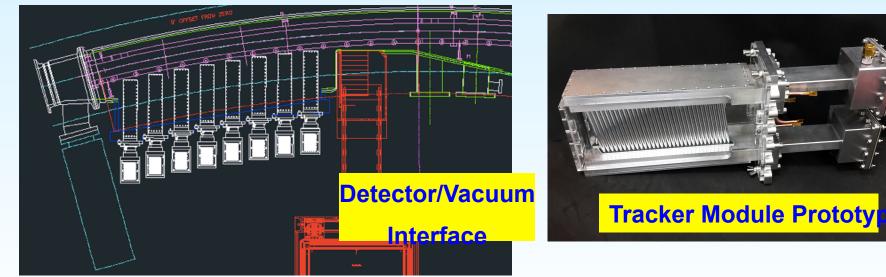
- MC-1 complete and occupied
 - Temp stability ±1 C;
 - Floor stability for magnet
 - Counting room; Electronics;
 Meeting area/Prep area;
 Services
- Ring re-assembled and cold
 - Alignment successes
 - Solved cold-cryostat leak from BNL
 - Power supplies on
 - Rough Field shimming starting imminently
 - team on site working now G. Venanzoni for the New Meon (g-2) Collaboration –EPS15, 24 July 2015




Upgrades: Ring

G. Venanzoni for the New Muon (g-2) Collaboration -EPS15, 24 July 2015


Upgrades: Magnetic Field


Upgrades: Detector

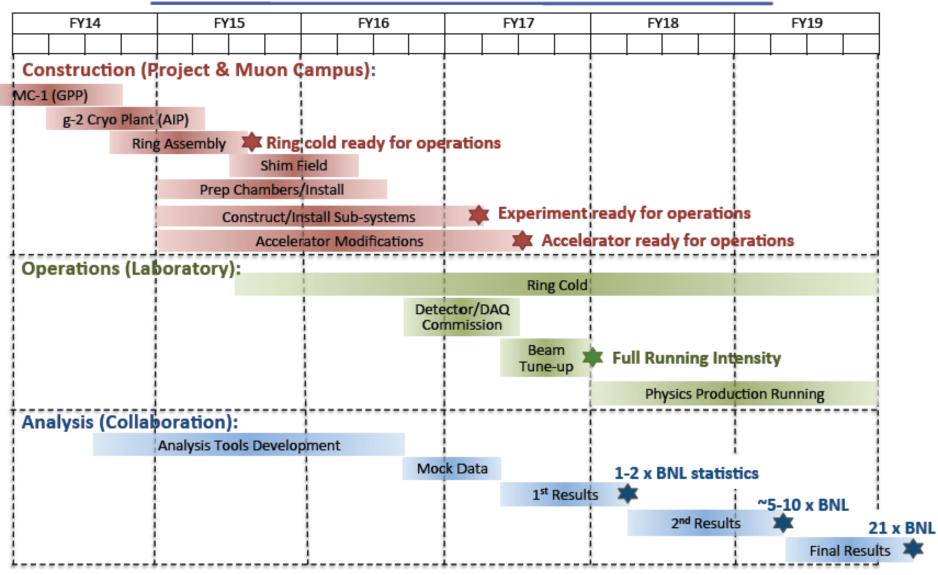
A. Anastasi, *et. al.*, Nucl. Instrum. Meth. A 788 (2015) 43

Calorimeter A.T. Fienberg, et. al., Nucl. Laser calibration system Instrum. Meth. A 783 (2015) 12

E989 Collaboration: 35 Institutes; >150 Members

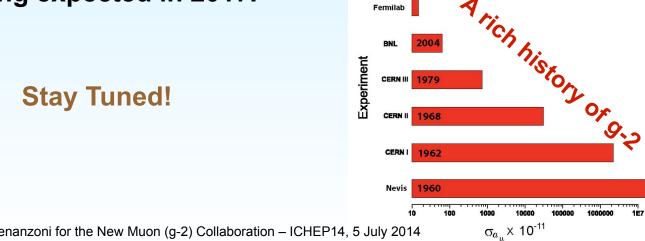
US Universities

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- Northern Illinois University
- Northwestern (thy)
- Regis
- Texas (joined, 2015)
- Virginia
- Washington
- York College
- US National Labs
 - Argonne
 - Brookhaven
 - Fermilab


••	Italy – Frascati, – Roma 2, – Udine	England University College London Liverpool
	– Pisa	Oxford
	– Naples	Rutherford Lab
*)	 Trieste China: Shanghai 	KAIST
	The Netherlands:	Russia:
	– Groningen	Dubna
	Germany: – Dresden (thy)	Novosibirsk

Co-spokespersons:	David Hertzog, Lee Roberts
Project Manager:	Chris Polly
Deputy PM:	Mary Convery
Institutional Board: Talks Committee: Publication Committee: g-2 Notes Editor: Collaboration Secretary:	Mike Eads, chair Lawrence Gibbons, chair Graziano Venanzoni, chair Bill Morse Liang Li

Schedule overview



Conclusion

• During the last ten years the muon (g-2) provided one of the strongest tests of the SM, thanks to the impressive accuracy of BNL experiment $(\delta a_{\mu}^{EXP} = 0.54 \text{ ppm})$. Important interplay with LHC!

•At present a discrepancy of more than 3 "standard deviations" between SM and Experiment; uncertainty dominated by BNL experiment. Possible sign of New Physics?

• New $(g-2)_{\mu}$ experiment at Fermilab with a fourfold reduction δa_{μ} 0.14 ppm . Data taking expected in 2017. Fermilab

G. Venanzoni for the New Muon (g-2) Collaboration – ICHEP14, 5 July 2014

SPARES

Construction of Campus accelerator goes on

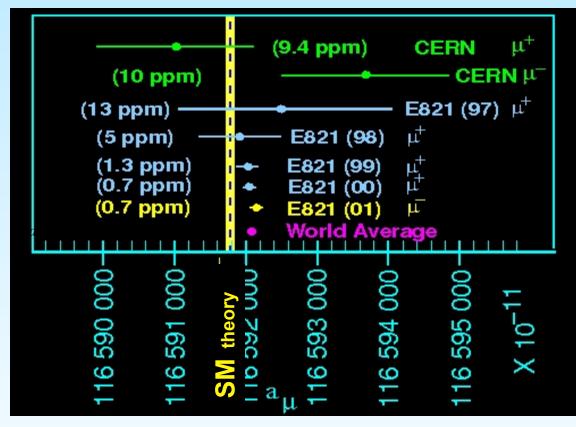
Construction has of the tunnel that connects g-2/Mu2e to the accelerator complex has started

More muons with less systematic errors!

- Take advantage of Fermilab beam structure:
 - Higher proton rate, less proton per bunch than at BNL:
 - BNL 4 X 10¹² p/fill: repetition rate 4.4 Hz
 - FNAL 10¹² p/fill: repetition rate 15 Hz
 - 900 m pion decay line (BNL 80 m) using antiproton ring:
 - 20 times less pion flash at injection than BNL
 - 0° muons:
 - ~5-10x increase μ/p over BNL
 - Can run parasitic to main injector experiments (e.g. to NOVA)
- Improved detectors against pileup, new electronics, better shimming to reduce B-field variation, more improvement over BNL:
 - Expect x3 reduction of syst. error on ω_{a}
 - Expect x2 reduction of syst. error on B-field

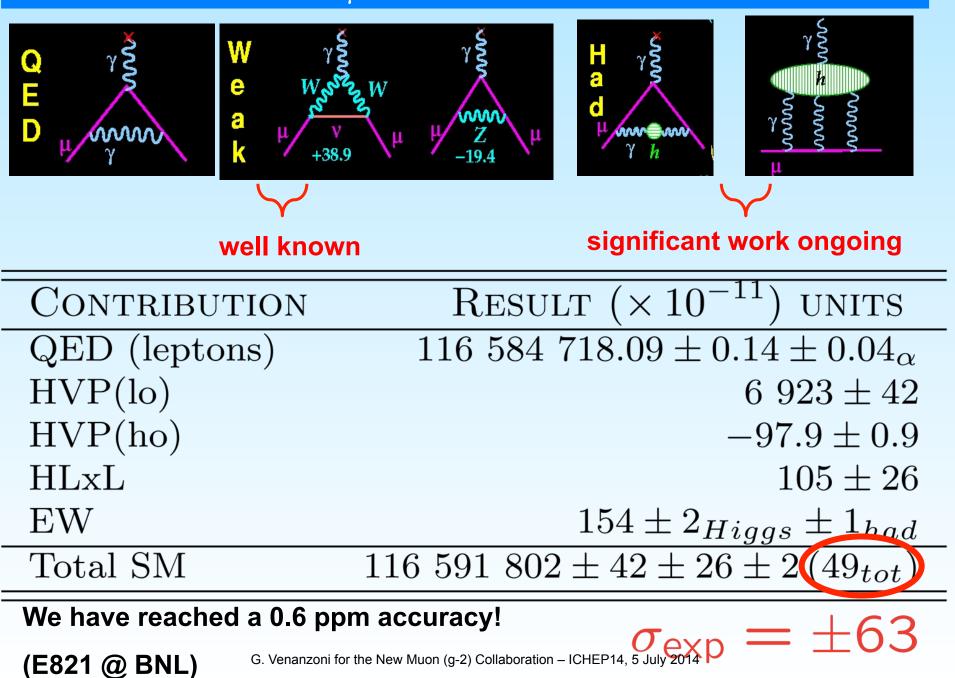
E989 Approved in Jan 2011. Expected data early 2017

G. Venanzoni for the New Muon (g-2) Collaboration – ICHEP14, 5 July 2014


$a_{\mu}^{E821} = 116592089(54)_{stat}(33)_{sys}(63)_{tot} \times 10^{-11}$

(0.54 ppm!)

A factor 15 improvement in accuracy respect to CERN!


~3.5 "standard deviations" with SM

Error dominated by experimental uncertainty!

 $a_{\mu}^{SM} = 116\ 591\ 802 \pm 49 \times 10^{-11}$ M. Davier et al. 2011 $a_{\mu}^{E821} - a_{\mu}^{SM} = (287 \pm 80) \times 10^{-11}\ (3.6\ \sigma)$ G. Venanzoni for the New Muon (g-2) Collaboration the of snew physics?

The SM Value for a_{μ}

More muons with less systematic errors!

- Take advantage of Fermilab beam structure:
 - proton bunch structure:
 - BNL 4 X 10¹² p/fill: repetition rate 4.4 Hz
 - FNAL 10¹² p/fill: repetition rate 15 Hz
 - using antiproton rings as an 900m pion decay line
 - 20 times <u>less</u> pion flash at injection than BNL
 - 0° muons
 - ~5-10x increase μ/p over BNL
 - Can run parasitic to main injector ex (e.g. to NOVA) or take all the boo

totai

Expected data taking beginning of 2017

G. Venanzoni for the New Muon (g-2) Collaboration - ICHEP14, 5 July 2014

Flash compared to BNL

parameter	FNAL/BNL
p / fill	0.25
π/p	0.4
π survive to ring	0.01
π at magic P	50
Net	0.05

Stored Muons / POT							
parameter	BNL	FNAL	gain factor $\mathrm{FNAL}/\mathrm{BNL}$				
Y_{π} pion/p into channel acceptance	$\approx 2.7\text{E-}5$	$\approx 1.1\text{E-}5$	0.4				
L decay channel length	88 m	$900~{\rm m}$	2				
decay angle in lab system	$3.8\pm0.5~\mathrm{mr}$	forward	3				
$\delta p_{\pi}/p_{\pi}$ pion momentum band	$\pm 0.5\%$	$\pm 2\%$	1.33				
FODO lattice spacing	$6.2 \mathrm{~m}$	$3.25~{ m m}$	1.8				
inflector	closed end	open end	2				
total			11.5				

Improving ω_a

E821 Error	Size	Plan for the New $g-2$ Experiment	Goal
	[ppm]		[ppm]
Gain changes	0.12	Better laser calibration and low-energy threshold	0.02
Lost muons	0.09	Long beamline eliminates non-standard muons	0.02
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation	0.04
CBO	0.07	New scraping scheme; damping scheme implemented	0.04
${\cal E}$ and pitch	0.05	Improved measurement with traceback	0.03
Total	0.18	Quadrature sum	0.07

Systematic uncertainty on ω_a expected to be reduced by 1/3 at E989 (compared to E821) thanks to **reduced** pion contamination,the **segmented** detectors, and an **improved** storage ring kick of the muons onto orbit.

Improving ω_p

Source of errors	Size [ppm]					
	1998	1999	2000	2001	future	
Absolute calibration of standard probe	0.05	0.05	0.05	0.05	0.05	
Calibration of trolley probe	0.3	0.20	0.15	0.09	0.06	
Trolley measurements of B_0	0.1	0.10	0.10	0.05	0.02	
Interpolation with fixed probes	0.3	0.15	0.10	0.07	0.06	
Inflector fringe field	0.2	0.20	-	-	-	
Uncertainty from muon distribution	0.1	0.12	0.03	0.03	0.02	
Others		0.15	0.10	0.10	0.05	
Total systematic error on ω_p	0.5	0.4	0.24	0.17	0.11->	

Systematic uncertainty on ω_p expected to be reduced by a factor 2 thanks to **better** shimming (uniformity of B), **relocations** of critical NMR probes, and **other** incremental changes