2015/Jul/23 EPS HEP, VIENNA

Searches for the $B^0 \to \eta \pi^0$ at Belle

MING-CHUAN CHANG, on behalf of Belle collaboration FU JEN CATHOLIC UNIVERSITY, TAIWAN

Use Full Belle Data set

$$B^0 \to \eta \pi^0$$

 $694 \ fb^{-1}$ at $\Upsilon(4S)$ resonances $753M \ B\overline{B}$ pairs

Previous studies of $B^0 \to \eta \pi^0$

Tree Diagram

Penguin Diagram

QCD factorization (theory) expectation: $(2-12) \times 10^{-7}$

The best upper limit by BaBar: $< 1.5 \times 10^{-6}$,

by Belle:
$$< 2.5 \times 10^{-6}$$

Implication of the results

Tree Diagram

Penguin Diagram

Constrain the contribution of isospin-breaking effects on the value of $\sin 2\alpha$ in $B^0\to \pi^+\pi^-$ decays

Event selections

Use EVTGEN event generator to generate 1 Million MC events.

Charged Particles

Impact Parameters : |dr| < 0.3 cm, |dz| < 3.0 cm

 $KID < 0.4 \text{ for pion}, eID < 0.95, \mu ID < 0.95$

 $Mass-constraint\ Fit,\ 115 < m_{\pi0} < 155\ MeV$ $E_{\gamma} > 100\ MeV (> 50\ MeV)\ in\ end\ cap(barrel)\ region$

$$\eta \to \gamma \gamma$$

 B^0

$$\pi^0$$
 veto, $E_{\gamma} > 50 \text{ MeV}$, $\frac{|E_{\gamma 1} - E_{\gamma 2}|}{E_{\gamma 1} + E_{\gamma 2}} < 0.9$

 $Mass-constraint Fit, 500 < m_{\gamma\gamma} < 575 MeV$

$$\eta \to \pi^+\pi^-\pi^0$$

Mass – constraint Fit, $538 < m_{\pi^{+}\pi^{-}\pi^{0}} < 557 \text{ MeV}$

 $M_{\rm bc} > 5.2 \; {\rm GeV}, \; |\Delta E| < 0.5 \; {\rm GeV}$

Background Suppression 1/2

Using neural networks (NN) technique and choosing 19 useful variables, we distinguish signals from continuum backgrounds.

Background Suppression 2/2

blue: signal MC, red: continuum MC, green: data side band

The NN output = C_{NB}, C_{NB}> -0.1, rejects 85% continuum backgrounds and contains 90% signal events.

$$C'_{NB} = \ln \left(\frac{C_{NB} - C_{NB}^{\min}}{C_{NB}^{\max} - C_{NB}} \right)$$

Best Candidate per event selection

choose smallest χ^2 among the multiple candidates $\chi^2 = \chi_\eta^2 + \chi_{\pi 0}^2$, mass – constraint fits

Signal Efficiency

$$\epsilon = \frac{N_{fit}}{N_{gen}}$$

$$\epsilon(B^0 \to \eta_{\gamma\gamma}\pi^0) = (18.43 \pm 0.04)\%$$

$$\epsilon(B^0 \to \eta_{3\pi}\pi^0) = (14.21 \pm 0.04)\%$$

Calculate the expected number of signal yields

$$N_s(B^0 \to \eta_{\gamma\gamma}\pi^0) = 54.6(Fit Region) = 49.2(Signal Region)$$

$$N_s(B^0 \to \eta_{3\pi}\pi^0) = 22.8(Fit Region) = 21.1(Signal Region)$$

Fitting Procedure 1/2

3D Unbinned maximum likelihood fit

$$\mathcal{L} = e^{-\sum_{j} Y_{j}} \cdot \prod_{i}^{N} \left(\sum_{j} Y_{j} \mathcal{P}_{j}(M_{\text{bc}}^{i}, \Delta E^{i}, C_{NB}^{\prime i}) \right)$$

Signal PDF

$$\mathcal{P}_j(M_{\mathrm{bc}}, \Delta E, C'_{NB}) = \mathcal{P}_j(M_{\mathrm{bc}}) \cdot \mathcal{P}_j(\Delta E) \cdot \mathcal{P}_j(C'_{NB})$$

Fitting Procedure 2/2

3D Unbinned maximum likelihood fit

Continuum BG PDF

Simultaneous Fit Results 1/3

Simultaneous Fit Results 2/3

Simultaneous Fit Results 3/3

Branching Fractions

Mode

$$Y_{\text{sig}}$$
 $\epsilon(\%)$
 $\mathcal{B}_{\eta}(\%)$
 Significance
 $\mathcal{B}(10^{-7})$
 $B^0 \to \eta_{\gamma\gamma}\pi^0$
 $30.6^{+12.2}_{-10.8}$
 18.4
 39.41
 3.1
 $5.6^{+2.2}_{-2.0}$
 $B^0 \to \eta_{3\pi}\pi^0$
 $0.5^{+6.6}_{-5.4}$
 14.2
 22.92
 0.1
 $0.2^{+2.8}_{-2.3}$

 Combined
 3.0
 $4.1^{+1.7}_{-1.5}$

$$\mathcal{B}(B^0 \to \eta \pi^0) = \frac{Y_{\text{sig}}}{N_{B\bar{B}} \times \epsilon \times \mathcal{B}_{\eta}}$$

Systematic Uncertainties

		-
Source	Uncertainty (%)	
PDF parametrization	$+10.2 \\ -9.2$	Br(
Fit bias	$+0.0 \\ -2.6$	
$\pi^0/\eta \to \gamma \gamma$ reconstruction	6.0	
Tracking efficiency	0.3	
PID efficiency	0.6	
C_{NB} selection efficiency	$+2.1 \\ -2.2$	
MC statistics	0.4	
Nonresonant contributions	$\begin{array}{c} + 0.0 \\ -10.8 \end{array}$	
$\mathcal{B}(\eta o \gamma \gamma)$	0.5	
$\mathcal{B}(\eta \to \pi^+\pi^-\pi^0)$	1.2	
Number of $B\overline{B}$ pairs	1.3	
Total	$+12.2 \\ -15.9$	

 $Br(B^0 \to \eta \pi^0) = (4.1 \pm_{1.5}^{1.7} \pm_{0.7}^{0.5}) \times 10^{-7}$

Upper Limits

$$Br(B^0 \to \eta \pi^0) < 6.5 \times 10^{-7} @ 90\% C.L.$$

Integrate the likelihood function from zero to infinity; take the value corresponding to 90% of the total area as the 90% C.L. upper limit.

Summary 1/2

Phys. Rev. D 92, 011101(R)-Published 9 July 2015

 3.0σ

$$Br(B^0 \to \eta \pi^0) = (4.1 \pm_{1.5}^{1.7} \pm_{0.7}^{0.5}) \times 10^{-7}$$
 evidence!

$$Br(B^0 \to \eta \pi^0) < 6.5 \times 10^{-7} @ 90\% C.L.$$

Good agreement with QCD factorization (theory) expectation:

$$(2-12)\times 10^{-7}$$

Summary 2/2

Phys. Rev. D 92, 011101(R)-Published 9 July 2015

 3.0σ

$$Br(B^0 \to \eta \pi^0) = (4.1 \pm_{1.5}^{1.7} \pm_{0.7}^{0.5}) \times 10^{-7}$$
 evidence!

$$Br(B^0 \to \eta \pi^0) < 6.5 \times 10^{-7} @ 90\% C.L.$$

Constrain the contribution of isospin-breaking effects on the value of $\sin 2\alpha$ in $B^0 \to \pi^+\pi^-$ decays Inserting our measured Br value into a theory paper*, $\pi^0 - \eta - \eta'$ mixing is less than 0.97^o at 90% C.L.

^{*} M. Gronau and J. Zupan, Phys. Rev. D 71, 074017 (2005).