

July 24th 2015

EPS 2015, Vienna

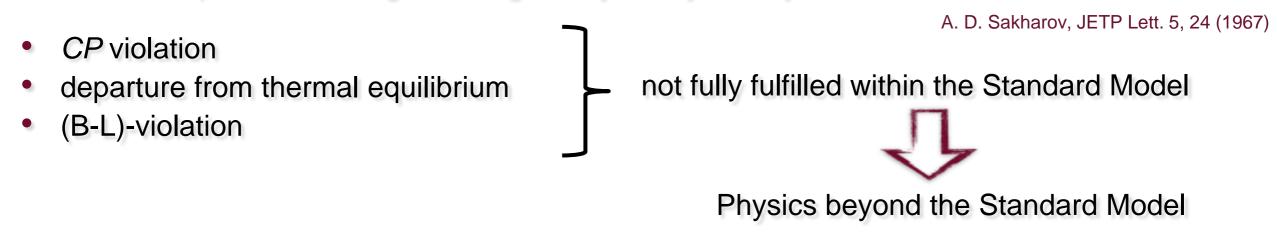
Impact of Neutrinoless Double Beta Decay on Models of Baryogenesis

Julia Harz University College London

Frank F. Deppisch, JH, Martin Hirsch, Phys. Rev. Lett. 112, 221601 (2014), arXiv: 1312.4447 [hep-ph]

Frank F. Deppisch, JH, Martin Hirsch, Wei-Chih Huang, Heinrich Päs, arXiv: 1503.04825 [hep-ph], accepted by Phys. Rev. D

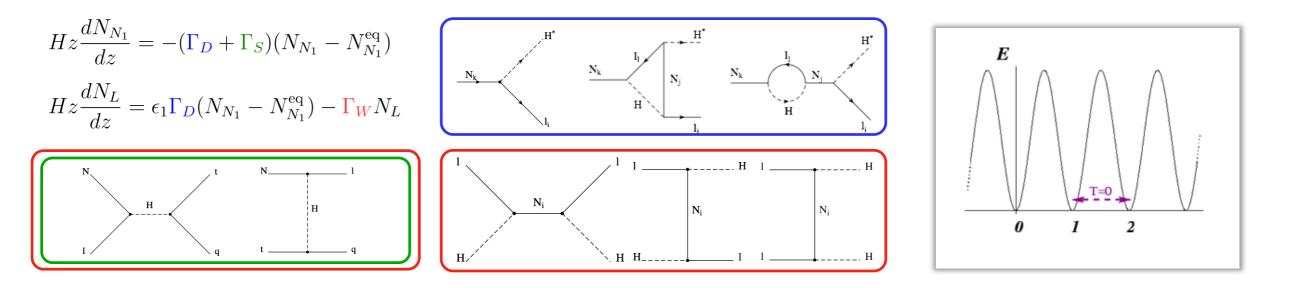
Motivation


• Observation of a baryon asymmetry of the Universe (BAU)

$$\eta_B^{\rm obs} = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = (6.09 \pm 0.06) \times 10^{-10}$$

P. A. R. Ade et al. [Planck Collaboration], arXiv:1502.01589 [astro-ph.CO]

• Theoretical requirements for generating a baryon asymmetry: 3 Sakharov conditions

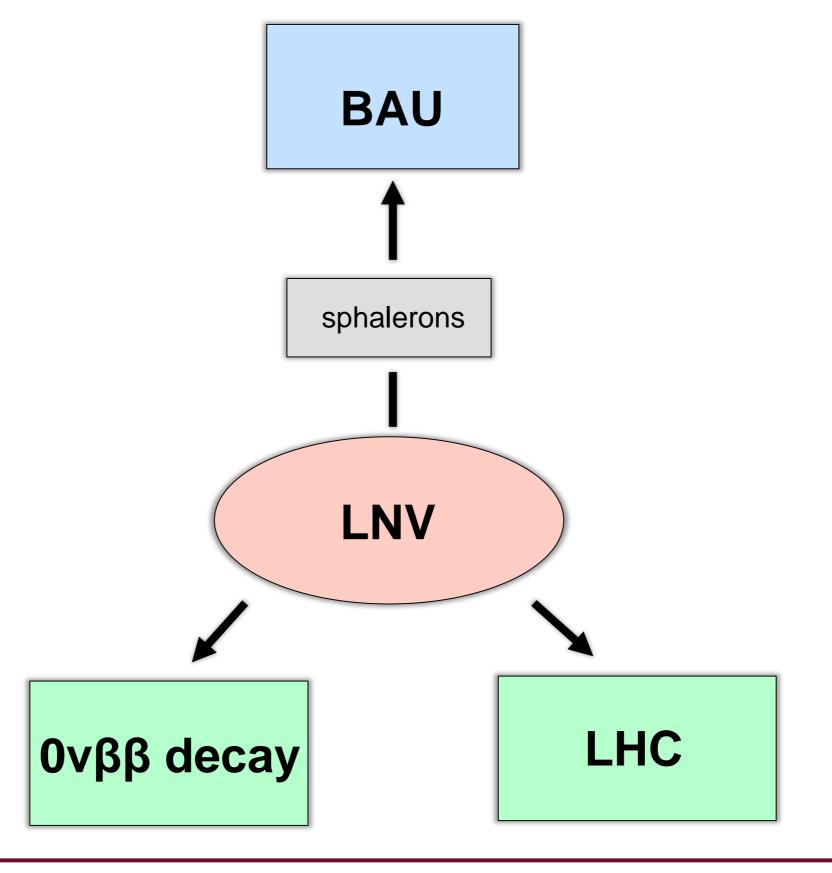


- Popular scenarios for explaining baryon asymmetry:
 - electroweak baryogenesis, leptogenesis, etc. ...

How can we shed light on the mechanism that generated the baryon asymmetry with current experiments?

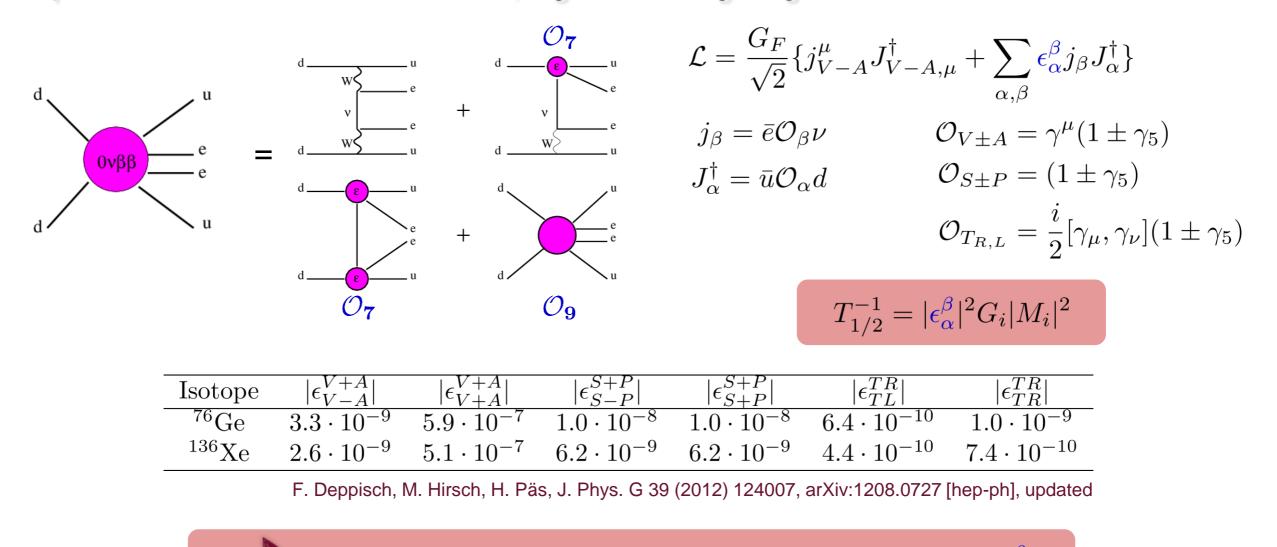
Idea

- *Reminder:* concept of baryogenesis via leptogenesis
 - generation of lepton asymmetry via heavy neutrino decays
 - competition with lepton number violating (LNV) washout processes
 - conversion to baryon asymmetry via sphaleron processes



- In reverse:
 - experimental observation of LNV corresponds to a certain washout strength
 - due to sphaleron processes this allows for a measure of the corresponding baryon asymmetry washout
 B washout

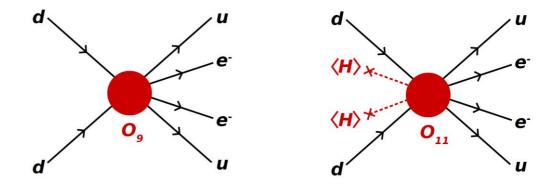
Observation of low energy LNV will have far-reaching consequences on mechanisms of baryogenesis


B asymmetry

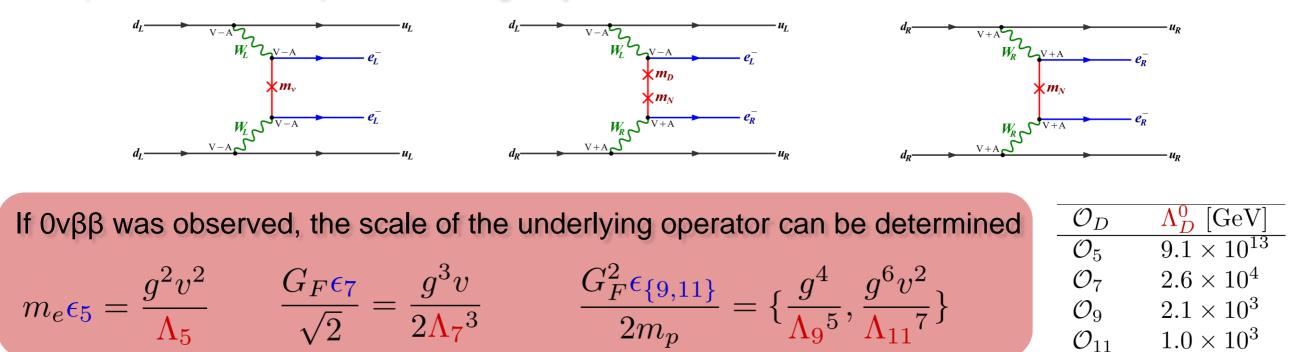
L C L

Neutrinoless Double Beta Decay (0vbb) AUCL

- $0\nu\beta\beta$ ($2n \rightarrow 2p + 2e^-$) is a sensitive probe of low energy LNV
- current limits on the half life of $0\nu\beta\beta$: $T_{1/2}^{^{76}Ge} > (1.1 1.9) \times 10^{25} \text{ y}$ (EXO-200, KamLAND-Zen) $T_{1/2}^{^{136}Xe} > 2.1 \times 10^{25} \text{ y}$ (GERDA)
- general lagrangian can be written in terms of effective couplings $\epsilon_{\alpha}^{\beta}$ which correspond to pointlike vertices at the Fermi scale, e.g. for the long range contribution:



• $0\nu\beta\beta$ half life sets constraints on effective couplings $\epsilon_{\alpha}^{\beta}$


Lepton Number Violating Operators

- Complete list of all LNV $\Delta L = 2$ effective operators
 - $d \qquad G_{F} \qquad u \qquad d \qquad O_{7} \qquad u \\ \langle H \rangle_{\star} \qquad e^{-} \qquad e^{-} \qquad \langle H \rangle_{\star} \qquad e^{-} \qquad e^{-} \qquad \langle H \rangle_{\star} \qquad e^{-} \qquad e^{-} \qquad e^{-} \qquad \langle H \rangle_{\star} \qquad e^{-} \qquad e^{-$
 - $\mathcal{O}_5 = (L^i L^j) H^k H^l \epsilon_{ik} \epsilon_{jl}$ $\mathcal{O}_7 = (L^i d^c) (\bar{e^c} \bar{u^c}) H^j \epsilon_{ij}$

K. S. Babu, C. N. Leung, Nucl. Phys. B 619 (2001), arxiv:0106054 [hep-ph] A. de Gouvea, J. Jenkins, PRD 77 (2008), arXiv:0708.1344 [hep-ph]


- $\mathcal{O}_9 = (L^i L^j) (\bar{Q}_i \bar{u^c}) (\bar{Q}_j \bar{u^c})$ $\mathcal{O}_{11} = (L^i L^j) (Q_k d^c) (Q_l d^c) H_m \bar{H}_i \epsilon_{jk} \epsilon_{lm}$
- Example for an UV completion: Left-right symmetric model

F. Deppisch, JH, W. Huang, M. Hirsch, H. Päs, arXiv:1503.07632 [hep-ph]

Lepton Asymmetry Washout

Study washout of pre-existing net lepton asymmetry introduced by single D-dim operator, e.g. \mathcal{O}_7

 $\mathcal{O}_7 = (L^i d^c) (\bar{e^c} \bar{u^c}) H^j \epsilon_{ij}$

20 combinations of \mathcal{O}_7 to create 2 \rightarrow 3 and 3 \rightarrow 2 processes

 c_D

 η_L

 $1 \rightarrow 4$ phase space suppressed

$$zHn_{\gamma}\frac{d\eta_{N}}{dz} = -\sum_{a,i,j,\cdots} \left(\frac{n_{N}n_{a}\cdots}{n_{N}^{eq}n_{a}^{eq}\cdots} - \frac{n_{i}n_{j}\cdots}{n_{i}^{eq}n_{j}^{eq}\cdots}\right)\gamma^{eq}(Na\cdots\leftrightarrow ij\cdots)$$

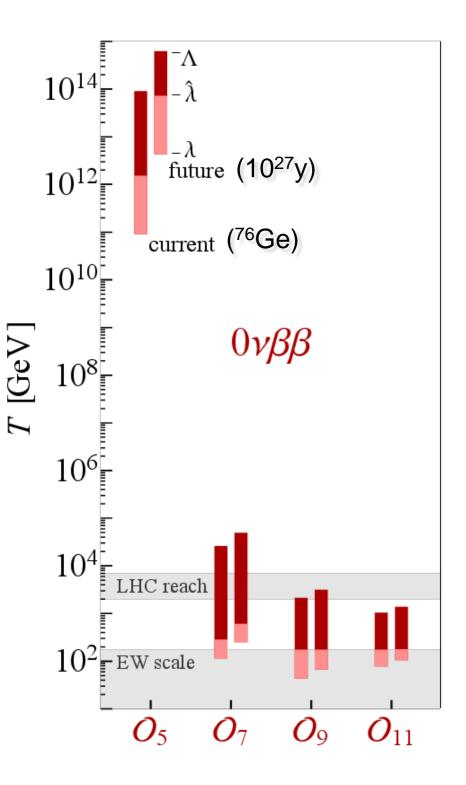
$$n_{\gamma}HT\frac{d\eta_{L}}{dT} = c_{D}\frac{T^{2D-4}}{\Lambda_{D}^{2D-8}}\eta_{L} \qquad \qquad \gamma^{eq} \propto \frac{T^{2D-4}}{\Lambda_{D}^{2D-8}}$$

$$c_{D} \qquad \text{operator specific factor}$$

Washout effective if

$$\frac{\Gamma_W}{H} \equiv \frac{c_D}{n_{\gamma} H} \frac{T^{2D-4}}{\Lambda_D^{2D-8}} = c'_D \frac{\Lambda_{\rm Pl}}{\Lambda_D} \left(\frac{T}{\Lambda_D}\right)^{2D-9} > 1$$

If $0\nu\beta\beta$ is observed, washout effective in the temperature interval

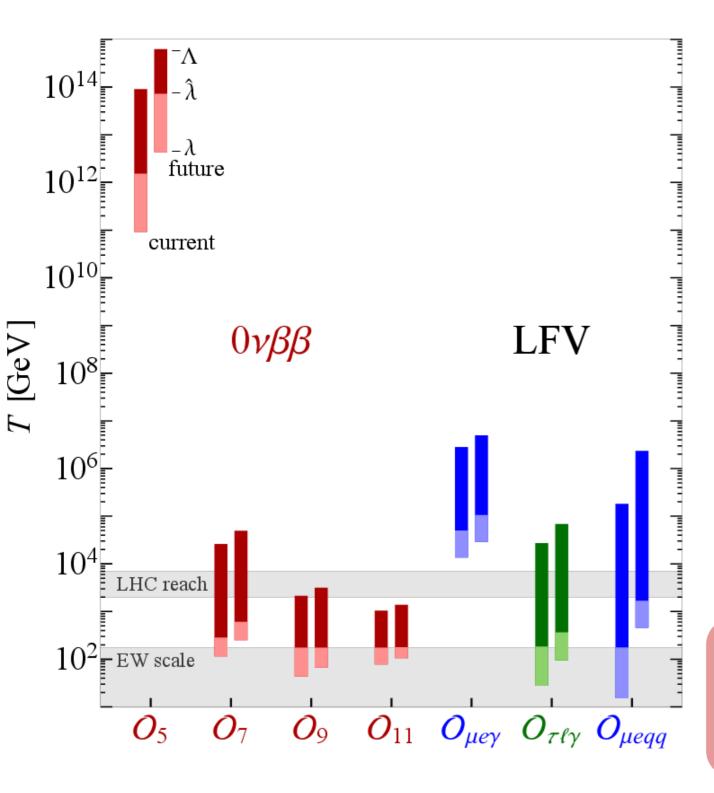

$$\Lambda_{D} \left(\frac{\Lambda_{D}}{c'_{D} \Lambda_{\rm Pl}} \right)^{\frac{1}{2D-9}} \equiv \lambda_{D} < T < \Lambda_{D}$$

lepton density

F. Deppisch, JH, W. Huang, M. Hirsch, H. Päs, arXiv:1503.07632 [hep-ph]

7

Lepton Asymmetry Washout - Results


- Λ scale of operator
 - λ scale above which washout highly effective $rac{\Gamma_W}{H} > 1$
- $\hat{\lambda}$ scale above which a max. lepton asymmetry of 1 is washed out to $\eta_B^{\rm obs}$ or less

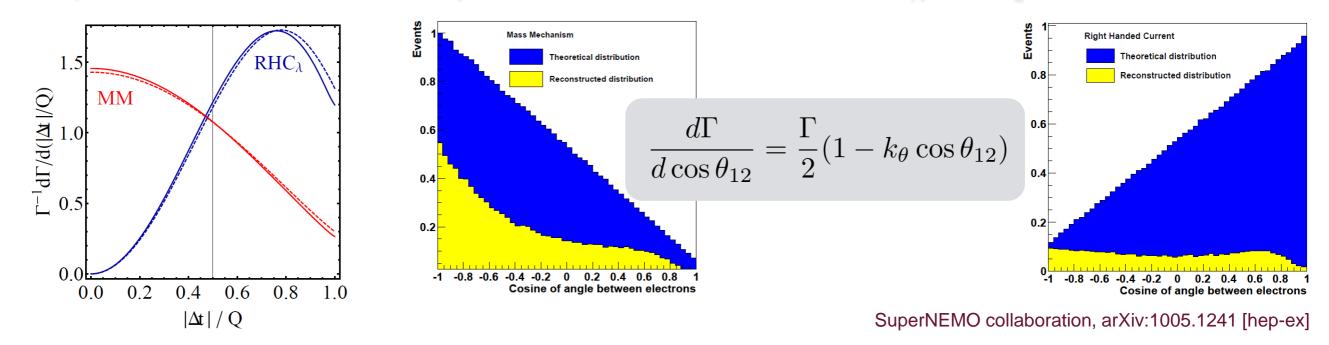
$$\hat{\lambda}_D \approx \left[(2D-9) \ln \left(\frac{10^{-2}}{\eta_B^{\text{obs}}} \right) \lambda_D^{2D-9} + v^{2D-9} \right]^{\frac{1}{2D-9}}$$

- IF $0v\beta\beta$ was observed via a non-standard mechanism, resulting washout would rule out baryogenesis mechanisms above λ
- observation of $0v\beta\beta$ via O_9 and O_{11} will imply observation of LNV at LHC
- $0\nu\beta\beta$ decay probes only electron-electron component of LNV operators $\frac{1}{\Lambda_0^5} \rightarrow \frac{c_{\alpha\beta}}{\Lambda_0^5}$

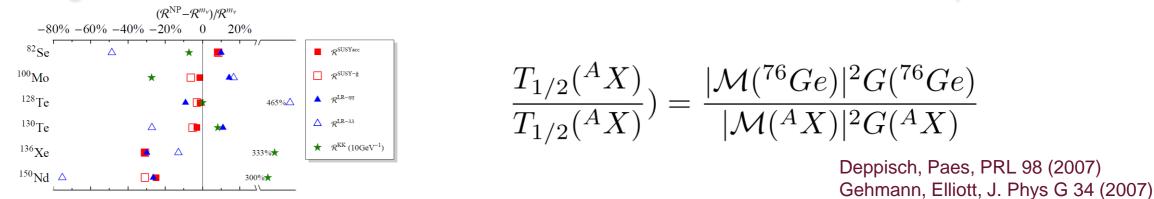
F. Deppisch, JH, W. Huang, M. Hirsch, H. Päs, arXiv:1503.07632 [hep-ph]

Lepton Flavour Violation - Results

• Most stringent limits on LFV set by 6-dim $\Delta L = 0$ operators

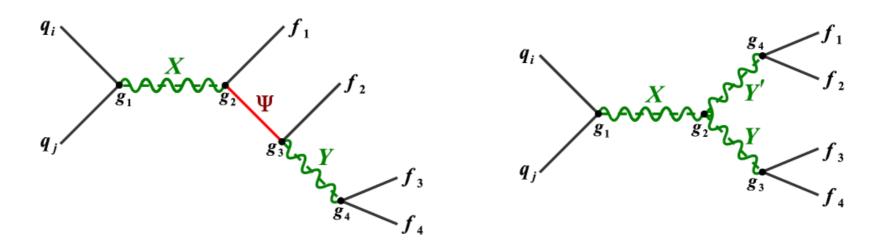

$$\mathcal{O}_{\ell\ell\gamma} = \mathcal{C}_{\ell\ell\gamma} \bar{L}_{\ell} \sigma^{\mu\nu} \bar{\ell}^c H F_{\mu\nu}$$
$$\mathcal{O}_{\ell\ell q q} = \mathcal{C}_{\ell\ell q q} (\bar{\ell} \Pi_1 \ell) (\bar{q} \Pi_2 q)$$
$$\mathcal{C}_{\ell\ell q q} = \frac{g^2}{\Lambda_{\ell\ell q q}^2} \qquad \mathcal{C}_{\ell\ell\gamma} = \frac{eg^3}{16\pi^2 \Lambda_{\ell\ell\gamma}^2}$$

- $\begin{array}{ll} \mbox{Current \& future limits:} \\ \mbox{Br}_{\mu \to e \gamma} < 5.7 \times 10^{-13} & (6.0 \times 10^{-14}) \\ \mbox{Br}_{\tau \to \ell \gamma} < 4.0 \times 10^{-8} & (1.0 \times 10^{-9}), \ \ell = e, \mu \\ \mbox{R}_{\mu \to e}^{\rm Au} < 7.0 \times 10^{-13} & (2.7 \times 10^{-17}) \end{array}$
- determine temperature interval in which LFV process equilibrate pre-existing flavour asymmetry
- IF LFV processes are observed as well, loophole of asymmetry being stored in another flavour sector is ruled out


F. Deppisch, JH, W. Huang, M. Hirsch, H. Päs, arXiv:1503.07632 [hep-ph]

Discrimination of different Operators AUCI

SuperNEMO can discriminate O₇ from other mechanisms, due to e⁻_R and e⁻_L in final state


- potential discrepancy between neutrino mass (cosmology) and 0vbb half live measurement could be an indication for 0vbb being triggered by non-standard mass mechanism
- distinguishing between different mechanisms via measurements in different isotopes

- **Comparison of 0\nu\beta^{-}\beta^{-} with 0\nu\beta^{+}\beta^{+}** Hirsch, Muto, Oda, Klapdor-Kleingrothaus, Z. Phys A347 (1994)
- observation of 0vββ via O₉ and O₁₁ will imply observation of LNV at LHC

Lepton Number Violation at the LHC

 Signature: ∆L = 2 LNV at LHC through resonant process pp → l[±]l[±] + 2 jets with two same-sign leptons and two jets without missing energy

$$\frac{\Gamma_W}{H} = \frac{1}{n_{\gamma}H} \frac{T}{32\pi^4} \int_0^\infty ds \ s^{3/2} \sigma(s) K_1\left(\frac{\sqrt{s}}{T}\right) \qquad \sigma(s) = \frac{4 \cdot 9 \cdot s}{f_{q_1 q_2}(M_X/\sqrt{s})} \sigma_{\text{LHC}}$$

$$\frac{\Gamma_W}{H} = \frac{0.028}{\sqrt{g_*}} \frac{M_{\rm P} M_X^3}{T^4} \frac{K_1 \left(M_X/T\right)}{f_{q_1 q_2} \left(M_X/\sqrt{s}\right)} \times \left(s\sigma_{\rm LHC}\right)$$

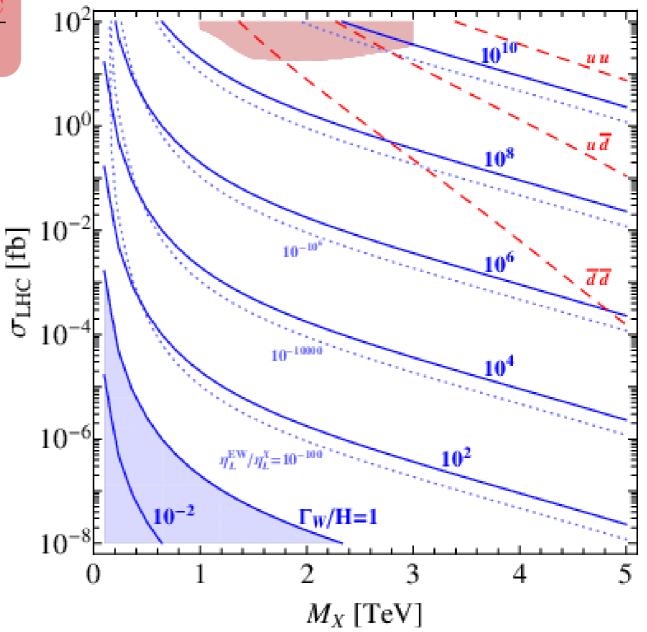
$$\log_{10} \frac{\Gamma_W}{H} > 6.9 + 0.6 \left(\frac{M_X}{\text{TeV}} - 1\right) + \log_{10} \frac{\sigma_{\text{LHC}}}{\text{fb}}$$

F. Deppisch, JH, M. Hirsch, PRL 112 (2014) 221601, arXiv:1312.4447 [hep-ph]

Â

Lepton Number Violation at the LHC

$$\log_{10} \frac{\Gamma_W}{H} > 6.9 + 0.6 \left(\frac{M_X}{\text{TeV}} - 1\right) + \log_{10} \frac{\sigma_{\text{LHC}}}{\text{fb}}$$

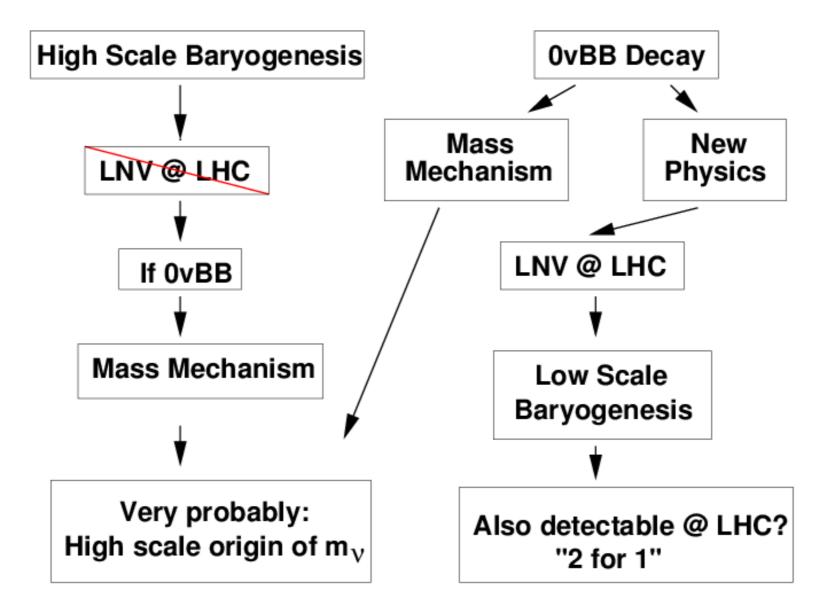

• For any realistic cross section at LHC with $\sigma_{\rm LHC} > 10^{-2} {\rm ~fb}$ washout highly effective

 $\frac{\Gamma_W}{H} >> 1$

 enormous washout of any pre-existing lepton asymmetry

 $\eta_L^{\rm EW}/\eta_L^X \approx \exp(-\Gamma_W/H)$

• LHC starts to exclude top of parameter plane


observation of LNV processes sets serious bounds on washout

• excludes LG models which generate asymmetry above

F. Deppisch, JH, M. Hirsch, PRL 112 (2014) 221601, arXiv:1312.4447 [hep-ph]

12

> observation of low energy LNV processes (e.g. in 0vbb or LHC) indicates a washout of any pre-existing baryon asymmetry irrespective of the baryogenesis mechanism

≜UCL

Backup

- LNV process at LHC involves right-handed leptons, but SM sphaleron processes only affect EW fermion doublets
 - → left- and right-handed fermions are in thermal equilibrium around EW-scale
- Possible generation of LNV only in one flavour family
 - \rightarrow observation of same-sign signatures in different flavours
 - \rightarrow observation of LFV processes
- LNV models with new conserved quantum numbers or hidden sectors may be exempt

S. Weinberg, PRD 22 (1980) A. Antaramian, L. Hall, A. Rasin, PRD 49 (1994), arXiv:9311279 [hep-ph]

Baryon asymmetry could be generated below the EW scale

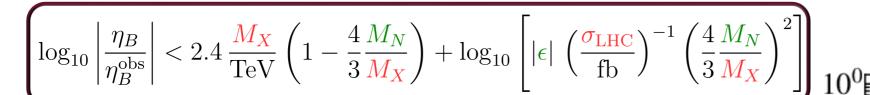
- **Now**: assuming classical leptogenesis with heavy right-handed neutrino M_N
- Solving Boltzmann equations for η_L and η_N assuming LHC process as only source for washout
- Conversion of lepton number to baryon asymmetry

$$\eta_B = -d_{\rm rec} r_{B/L} \eta_L(T_c)$$

A. Pilaftsis, T. Underwood, Phys. Rev. D 72 (2005)

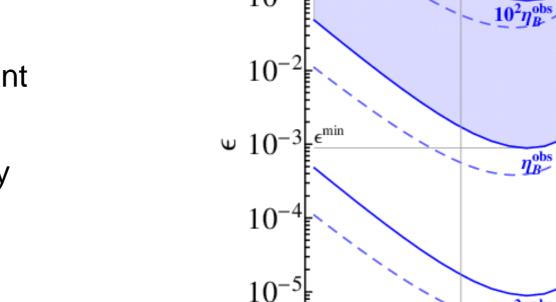
$$r_{B/L} = \frac{8N_g + 4N_H}{14N_g + 9N_H} \approx 1/2$$
$$d_{\rm rec} \approx 1/27$$
$$T_c \approx 135 \,\,{\rm GeV}$$

Upper limit on baryon asymmetry


$$\log_{10} \left| \frac{\eta_B}{\eta_B^{\text{obs}}} \right| < 2.4 \frac{M_X}{\text{TeV}} \left(1 - \frac{4}{3} \frac{M_N}{M_X} \right) + \log_{10} \left[\left| \epsilon \right| \left(\frac{\sigma_{\text{LHC}}}{\text{fb}} \right)^{-1} \left(\frac{4}{3} \frac{M_N}{M_X} \right)^2 \right] \right]$$

Upper limit on baryon asymmetry as a function of LG parameters M_N and ϵ and observables M_X and $\sigma_{\rm LHC}$

with


Lepton Number Violation at the LHC

- For $M_N < M_X$
 - Strong constraints on resonant LG models
 - Lower limit on CP-asymmetry $\epsilon > \epsilon^{\min} \approx 10^{-3}$
- For $M_N > M_X$
 - conservative upper limit for η_B
 - not possible to generate large enough baryon asymmetry at all

Observation of LNV process at the LHC excludes high-scale Leptogenesis models

 10^{-6}

 10^{-2}

 10^{-1}

19

 M_N^{\max}

 10^{0}

 $\sigma_{\rm LHC} = 0.1 \; {\rm fb}$

 $M_X = 2 \text{ TeV}$

 $10^{-2}\eta_{B}^{\text{obs}}$

 M_N/M_X

 10^{-1}

 $M_N = T_c$