Top and EW Physics at the LHeC

Z. Zhang
LAL, Orsay

On behalf of

Outline

1) Introduction
2) Top physics at the LHeC
3) Examples of precision EW measurements
4) Summary
Introduction

Energy-Recovery Linac (ERL)

L: $>10^{33}$ cm$^{-2}$s$^{-1}$

L_{int}: upto 1 ab$^{-1}$
Introduction

Largely extending HERA kinematic region into an unexplored territory

It has a very rich physics program

The focus of this talk is on top & EW physics
Top Physics at the LHeC

- Single (anti)top production in Charged Current (CC) processes
 * Sensitive to PDFs of the proton
 * Direct measurement of $|V_{tb}|$ (0.5%)
 * Top quark polarization
 * W boson helicity
 * Search for anomalous Wtb couplings
 * Study ttH in tH production?

- Top production in Neutral Current (NC) processes
 * Search for anomalous $ttγ(Z)$ couplings
 * FCNC (single top in $γp$ process)
Single Top Production at LHeC

CC single (anti)top production: the dominant process at LHeC

LHeC (60GeV x 7TeV): has a clean environment for top physics studies

LHC 14TeV: has larger cross section ~250pb ($m_t=173$GeV, t-channel), but large background and low selection efficiency

http://arxiv.org/abs/1307.1688

Dutta, Goya, Kumar, Mellado
Anomalous Wtb Couplings

$$\mathcal{L}_{Wtb} = \frac{g}{\sqrt{2}} \left[W_\mu \bar{t} \gamma^\mu (V_{tb} f_1^L P_L + f_1^R P_R) b - \frac{1}{2m_W} W_\mu \bar{t} \sigma^{\mu \nu} (f_2^L P_L + f_2^R P_R) b \right] + h.c.$$

- **SM V-A, Left-handed Vector coupling**
 $$f_1^L = 1 + \Delta f_1^L$$
- **BSM, R-handed Vector coupling**
- **BSM, L,R-handed Tensor couplings**

SM: $f_1^L = 1$, $\Delta f_1^L = f_1^R = f_2^L = f_2^R = 0$

LHeC expected to have the largest sensitivity to Δf_1^L
Expected Precision vs. Other Determinations

Dutta, Goya, Kumar, Mellado
http://arxiv.org/abs/1307.1688

One example from hadronic decays → Important to control syst. error.

Similar constraints available for other couplings from both hadronic and leptonic decay modes

| Upper limits at 95%CL | $|\Delta f_1^L|$ | $|f_1^R|$ | $|f_2^L|$ | $|f_2^R|$ |
|----------------------|----------------|------------|------------|------------|
| LHeC (100fb⁻¹, had, syst: 0.01-0.1) | 0.005-0.03 | 0.01-0.1 | 0.01-0.1 | 0.01-0.1 |
| D0 (5.4fb⁻¹, W-helicity, single top) arXiv:1204.2332 | | 0.548 | 0.324 | 0.347 |
| LHC (Wt, γp, 100fb⁻¹) arXiv:1210.3235 | 0.03-0.06 | 0.22-0.34 | 0.06-0.08 | 0.06-0.08 |
| B decays (indirect) arXiv:0802.1412 | [-0.13, 0.03] | [-0.0007, 0.0025] | [-0.0013, 0.0004] | [-0.15, 0.57] |
Examples for precision EW measurements at the LHeC based on inclusive DIS interactions
Inclusive Neutral/Charged Current Processes

- Dominant hard processes at LHeC
- Event kinematics:
 - $Q^2 = -q^2$: Boson virtuality
 - x: momentum fraction of struck parton
 - $y = Q^2/sx$: inelasticity

 can be precisely determined (for NC in particular using different methods)
Cross Sections, Quark Couplings & PDFs

\[
\frac{d^2\sigma_{\text{NC}}^\pm}{dx dQ^2} \sim Y_+ \tilde{F}_2 + Y_- \tilde{F}_3 - y^2 \tilde{F}_L \quad \text{with} \quad Y_\pm = 1 \pm (1 - y)^2
\]

\[
\begin{align*}
\tilde{F}_2 &= F_2 - (v_e - P_e a_e) \kappa_Z F_2^{\gamma Z} + (v_e^2 + a_e^2 - 2 P_e v_e a_e) \kappa_Z^2 F_2^Z \\
\tilde{F}_3 &= F_3 - (a_e - P_e v_e) \kappa_Z x F_3^{\gamma Z} + [2v_e a_e - P_e (v_e^2 + a_e^2)] \kappa_Z^2 x F_3^Z
\end{align*}
\]

\[
\begin{align*}
\left[F_2, F_2^{\gamma Z}, F_2^Z \right] &= x \sum_q \left[e_q^2, 2e_q v_q, v_q^2 + a_q^2 \right] \{ q + \bar{q} \} \\
x F_3^{\gamma Z}, x F_3^Z \right] &= 2x \sum_q \left[e_q a_q, v_q a_q \right] \{ q - \bar{q} \}
\end{align*}
\]

Structure function formulae given for e^-p scattering, for e^+p, P_e \rightarrow -P_e

\[
\kappa^{-1}_Z = \frac{2\sqrt{2\pi\alpha} Q^2 + M_Z^2}{G_F M_Z^2} \frac{Q^2}{Q^2}
\]

CC cross sections have similar but different structure functions and PDF combinations

F_L=0 in LO parton model, F_L \sim g at NLO
Simultaneous fit of quark couplings & PDFs to simulated LHeC & HERA NC, CC data

<table>
<thead>
<tr>
<th>Set</th>
<th>E_e/GeV</th>
<th>E_N/TeV</th>
<th>N</th>
<th>L^+/fb$^{-1}$</th>
<th>L^-/fb$^{-1}$</th>
<th>Pol</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>50</td>
<td>7</td>
<td>7</td>
<td>50</td>
<td>50</td>
<td>0.4</td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>D</td>
<td>100</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>E</td>
<td>150</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

B has smaller acceptance than C
A Comparison with Other Determinations

LHeC has great potential to determine quark couplings with unprecedented precision.

Note: LHeC corresponds to scenario C, HERA determination is being updated, some improvement expected.
Relative Contribution of γZ & Z

$$\tilde{F}_2 \simeq F_2 + P a_e \kappa Z F_2^{\gamma Z} + a_e^2 \kappa_Z^2 F_2^Z$$

The relative contribution of γZ interference & Z exchange becomes increasingly important toward high x and Q^2
\[A^\pm = \frac{\sigma_{NC}^\pm(P_R) - \sigma_{NC}^\pm(P_L)}{\sigma_{NC}^\pm(P_R) + \sigma_{NC}^\pm(P_L)} \approx \pm \frac{\kappa_Z a_e(P_L - P_R)}{2} \frac{F_Z^\gamma}{F_2} \]

\[\kappa_Z^{-1} = 4 \sin^2 \theta \cos^2 \theta \frac{Q^2 + M_Z^2}{Q^2} \]

NC/CC cross section ratio also sensitive to $\sin^2 \theta$ provided PDFs dependence is under control

Expected LHeC determination is precise and covers a large energy scale range
CC Total Cross Section vs M_W

CC:

W propagator mass

ν propagator mass

$e^+ \rightarrow \nu_e$

W^-

$q' \rightarrow q$

$p \rightarrow x_p$

Spectacular demonstration of finite/massive M_W

Other measurements exist for better M_W determination & constraining right-handed CC

H1 Collab.

LHeC

HERA
Summary

- LHeC if realized will greatly enlarge the physics program, discovery potential of the LHC in a complementary manner

- Top and EW physics based on previous studies are two good examples

- Larger potential expected with more studies from both theory and experimental communities
H. Spiesberger: LHeC 5th workshop, Jan. 20, 2014