Proposing a new LHC search for light stops

Christoffer Petersson

Université Libre de Bruxelles International Solvay Institutes Chalmers University of Technology

Proposing a new LHC search for light stops

Christoffer Petersson

Université Libre de Bruxelles International Solvay Institutes Chalmers University of Technology

Based on work done with Gabriele Ferretti, Roberto Franceschini and Riccardo Torre:

Phys.Rev.Lett. 114 (2015) 201801 (arXiv:1502.01721)

Motivation

• With the discovery of a SM-like Higgs, the "Naturalness problem" is more sharply defined than ever.

• The top quark gives rise to the leading quantum correction that destabilizes the EW scale.

• In SUSY models, this correction is cancelled by the superpartner of the top, the stop.

• Naturalness suggests that the stop mass is around or below the EW scale and hence observable at the LHC.

Of course, light stops have been widely studied...

- JHEP 10 (2010) 078, arXiv:1006.2833 [Inspire].
- [2] S. Bornhauser, M. Drees, S. Grab, and J. S. Kim, Phys. Rev. D 83 (2011) 035008, arXiv:1011.5508 [Inspire].
- [3] C. Brust, A. Katz, S. Lawrence, and R. Sundrum, JHEP 03 (2012) 103, arXiv:1110.6670 [Inspire].
- [4] Y. Kats and D. Shih, JHEP 08 (2011) 049, arXiv:1106.0030 [Inspire].
- [5] X.-J. Bi, Q.-S. Yan, and P.-F. Yin, Phys. Rev. D 85 (2012) 035005, arXiv:1111.2250 [Inspire].
- [6] B. He, T. Li, and Q. Shafi, JHEP 05 (2012) , arXiv:1112.4461 [Inspire].
- [7] M. Drees, M. Hanussek, and J. S. Kim, Phys. Rev. D 86 (2012) 035024, arXiv:1201.5714 [Inspire].
- [8] Y. Bai, H.-C. Cheng, J. Gallicchio, and J. Gu, JHEP 07 (2012) 110, arXiv:1203.4813 [Inspire].
- [9] T. Plehn, M. Spannowsky, and M. Takeuchi, JHEP 08 (2012) 091, arXiv:1205.2696 [Inspire].
- [10] D. S. M. Alves, M. R. Buckley, P. J. Fox, J. D. Lykken, and C.-T. Yu, arXiv: 1205.5805 [Inspire].
- [11] Z. Han, A. Katz, D. Krohn, and M. Reece, JHEP 08 (2012) 083, arXiv:1205.5808 [Inspire].
- [12] D. E. Kaplan, K. Rehermann, and D. Stolarski, JHEP 07 (2012) 119, arXiv:1205.5816 [Inspire].
- [13] C. Brust, A. Katz, and R. Sundrum, JHEP 08 (2012) 059, arXiv: 1206.2353 [Inspire].
- [14] A. Choudhury and A. Datta, Mod. Phys. Lett. A 27 (2012) 1250188, arXiv:1207.1846 [Inspire].
- [15] K. Ghosh, K. Huitu, J. Laamanen, and L. Leinonen, Phys. Rev. Lett. 110 (2013) 141801, arXiv:1207.2429 [Inspire].
- [16] J. A. Evans and Y. Kats, JHEP 04 (2013) 028, arXiv:1209.0764 [Inspire].
- [17] C. Kilic and B. Tweedie, arXiv:1211.6106 [Inspire].
- [18] M. L. Graesser and J. Shelton, Phys. Rev. Lett. 111 (2013) 121802, arXiv:1212.4495 [Inspire].
- [19] K. Krizka, A. Kumar, and D. E. Morrissey, Phys. Rev. D 87 (2013) 095016, arXiv:1212.4856 [Inspire].
- [20] R. Franceschini and R. Torre, Eur. Phys. J. C 73 (2013) 2422, arXiv:1212.3622 [Inspire].

- T. Plehn, M. Spannowsky, M. Takeuchi, and D. Zerwas, [21] A. Delgado, G. F. Giudice, G. Isidori, M. Pierini, and A. Strumia, Eur. Phys. J. C 73 (2013) 2370, arXiv:1212.6847 [Inspire].
 - [22] B. Dutta, T. Kamon, N. Kolev, K. Sinha, K. Wang, and S. Wu, Phys. Rev. D 87 (2013) 095007. arXiv:1302.3231 [Inspire].
 - [23] M. R. Buckley, T. Plehn, and M. Takeuchi, JHEP 08 (2013) 086, arXiv:1302.6238 [Inspire].
 - [24] A. Chakraborty, D. K. Ghosh, D. Ghosh, and D. Sengupta, JHEP 10 (2013) 122, arXiv:1303.5776 [Inspire].
 - [25] I. Low Phys. Rev. D 88 (2013) 095018, arXiv:1304.0491 [Inspire].
 - [26] Y. Bai, H.-C. Cheng, J. Gallicchio, and J. Gu, JHEP 08 (2013) 085, arXiv:1304.3148 [Inspire].
 - [27] G. Belanger, D. Ghosh, R. Godbole, M. Guchait, and D. Sengupta, Phys. Rev. D 89 no. 1, (2014) 015003, arXiv:1308.6484 [Inspire].
 - [28] R. Boughezal and M. Schulze, Phys. Rev. D 88 (2013) 114002, arXiv:1309.2316 [Inspire].
 - [29] Z. Han and A. Katz, arXiv:1310.0356 [Inspire].
 - [30] B. Dutta, W. Flanagan, A. Gurrola, W. Johns, T. Kamon, P. Sheldon, K. Sinha, K. Wang, and S. Wu, Phys. Rev. D 90 (2014) 095022, arXiv:1312.1348 [Inspire].
 - [31] M. Papucci, K. Sakurai, A. Weiler, and L. Zeune, Eur. Phys. J. C 74 (2014) 3163, arXiv:1402.0492 [Inspire].
 - [32] M. R. Buckley, T. Plehn, and M. J. Ramsey-Musolf, Phys. Rev. D 90 (2014) 014046, arXiv:1403.2726 Inspire.
 - [33] M. Czakon, A. Mitov, M. Papucci, J. T. Ruderman, and A. Weiler, Phys. Rev. Lett. 113 (2014) 201803, arXiv:1407.1043.
 - [34] R. Grober, M. Mühlleitner, E. Popenda, and A. Wlotzka, arXiv:1408.4662 [Inspire].
 - [35] T. Eifert and B. Nachman, arXiv:1410.7025 [Inspire].
 - [36] W. S. Cho, J. S. Gainer, D. Kim, K. T. Matchev,
 - F. Moortgat, L. Pape, and M. Park, arXiv:1411.0664

- [37] ATLAS Collaboration, G. Aad et al., JHEP 10 (2013) 189, arXiv:1308.2631 [Inspire].
- [38] ATLAS Collaboration, G. Aad et al., JHEP 1406 (2014) 124, arXiv:1403.4853 [Inspire].
- [39] ATLAS Collaboration, G. Aad et al., Eur. Phys. J. C 74 no. 6, (2014) 2883, arXiv:1403.5222 [Inspire].
- [40] ATLAS Collaboration, G. Aad et al., JHEP 09 (2014) 015, arXiv:1406.1122 [Inspire].
- [41] ATLAS Collaboration, G. Aad et al., JHEP 1411 (2014) 118. arXiv:1407.0583 [Inspire].
- [42] ATLAS Collaboration, G. Aad et al., Phys. Rev. D 90 no. 5, (2014) 052008, arXiv:1407.0608 [Inspire].
- [43] CMS Collaboration, S. Chatrchyan et al., Phys. Rev. Lett. 111 (2013) 221801, arXiv:1306.6643 [Inspire].
- [44] CMS Collaboration, S. Chatrchyan et al., Eur. Phys. J. C 73 no. 12, (2013) 2677, arXiv:1308.1586 [Inspire]
- [45] CMS Collaboration, S. Chatrchyan et al., CMS Note CMS-PAS-SUS-13-009 (2013) [CDS].
- [46] CMS Collaboration, S. Chatrchyan et al., Phys. Rev. Lett. 112 (2014) 161802, arXiv:1312.3310 [Inspire].
- [47] CMS Collaboration, V. Khachatryan et al., Phys. Lett. B 736 (2014) 371–397, arXiv:1405.3886 [Inspire].
- [48] CMS Collaboration, S. Chatrchyan et al., arXiv:1411.7255 [Inspire].
- [49] CMS Collaboration, V. Khachatryan et al., arXiv:1412.7706 [Inspire].
- [50] CMS Collaboration, [CMS-PAS-SUS-14-011].

Simplified Model

— $ilde{\chi}_1^0$ (LSP, stable)

Christoffer Petersson, ULB

Christoffer Petersson, ULB

- At most 3 jets with pT>30 GeV Monojet search "MI" Leading jet pT>280 GeV
 - MET>220 GeV

Background	t ar t	$Z(\rightarrow \nu \nu)$	$W(\rightarrow \ell u)$	Dibosons	Others	Total
M1	780 ± 73	17400 ± 720	14100 ± 337	650 ± 99	565 ± 301	33450 ± 960

At most 3 jets with pT>30 GeV Monojet search "MI" Leading jet pT>280 GeV MET>220 GeV

Background $t\bar{t}$ $Z(\rightarrow \nu \nu) \qquad W(\rightarrow \ell \nu)$ Total Dibosons Others 780 ± 73 17400 ± 720 14100 ± 337 650 ± 99 565 ± 301 33450 ± 960 M1M1+b-tag 307 ± 57 261 ± 22 144 ± 7 55 ± 17 767 ± 64

Our proposed search: "MI+b-tag"

In addition to the MI selections, require that at least one of the 3 jets is b-tagged

Estimated reach of our proposed search "MI+b-tag"

Estimated reach of our proposed search "MI+b-tag"

Conclusions

- Light stop squarks are important targets from the point of view of Naturalness
- Stop squarks around 100 GeV that decay 4-body are particularly challenging
- One way to cover them, already with the 8 TeV data set, is to augment the ATLAS monojet search (1407.0608) with a b-tag requirement
- Greater coverage is achieved by defining additional signal regions, with optimized cuts for the jets and the MET
- Such an "MI+b-tag" search is expected to also be sensitive to stops decaying to b+chargino, for which there also are holes in the current exclusion plots

Thank you!