# The Mu2e Experiment at Fermilab

Markus Röhrken
California Institute of Technology

On behalf of the Mu2e Collaboration

24th of July 2015







# **Charged Lepton Flavor Violation**

• Charged lepton flavor violation (CLFV) is extremely suppressed in the Standard Model (SM) due to sums over  $(\Delta m_{ij}/M_W)^4$ , for example  $\mu \to e \gamma$ :

$$\mathcal{B}(\mu \to e \gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$



- SM rates of CLFV are below any conceivable experimental sensitivity
  - → any detection of a signal is an unambiguous evidence for physics beyond the SM
- Searches for CLFV have a long history:



Most stringent limits for muon decays:

MEG PRL **110**, 201801 (2013) 
$$\mathcal{B}(\mu \to e \gamma) < 5.7 \times 10^{-13}$$

SINDRUM-II EPJ C 47, 337 (2006) 
$$R_{\mu e}(\mu N \rightarrow e N \ {
m on \ Au}) < 7 imes 10^{-13}$$

# **Sensitivity to Charged Lepton Flavor Violation**

Model-independent effective Lagrangian allowing for CLFV:

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} \left( \sum_{q=u,d} \bar{q}_{L} \gamma^{\mu} q_{L} \right)$$

Prog. Part. Nucl. Phys.PRL 71, 75 (2013)

• Two types of amplitudes contribute to CLFV:



- $\mu \to e \gamma \,$  and  $\mu N \to e N \,$  have complementary sensitivity to new physics
  - → important to search for both processes
- Mu2e can probe at all  $\kappa$  and mass scales up to 10<sup>4</sup> TeV



#### **Conversion of Muons to Electrons**

• Mu2e searches for the neutrino-less μ⁻→e⁻ conversion in the field of an atomic nucleus:



- Coherent process
- Kinematics of a two-body decay
   → mono-energetic electron
- Lifetime muonic aluminum τ(1S)=864 ns
- Corrected for nuclear recoil and binding energy the signature is a single 105 MeV electron

Observable: Ratio of μ<sup>-</sup>→e<sup>-</sup> conversion rate relative to muon capture by nucleus

$$R_{\mu e} = \frac{\Gamma(\mu^{-} + A(Z, N) \to e^{-} + A(Z, N))}{\Gamma(\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z, N))}$$

- Mu2e is designed to measure  $R_{\mu e}$  with a single-event-sensitivity of 2.9×10<sup>-17</sup>
  - → sensitivity improvement of 4 orders of magnitude compared to SINDRUM-II

# **Background Processes**





- The dominant irreducible background comes from the decay of bound muons
  - 39% of stopped muons decay in orbit (DIO)
  - recoil of the nucleus causes tail into the signal region
  - spectrum falls rapidly close to the endpoint
- Other backgrounds originate from:
  - radiative pion captures
  - beam-induced backgrounds
  - cosmic ray or antiproton induced backgrounds

## The Mu2e Experiment

- Key components:
  - Intense 8 GeV proton beam
  - 3 superconducting solenoids (4.6T to 1T)
  - Muon stopping target, tracker and calorimeter



- Measurement principle:
  - Proton beam on tungsten target produces pions and muons
  - Muons are collected and propagated through s-shaped transport solenoid
  - Collimated low energy muons are stopped on an aluminum target
  - Trajectories and energies of electrons from muonic atoms are measured

## **Mu2e Timing Structure**

FNAL accelerator complex and Mu2e timing structure:



 Utilize the pulsed structure of the proton beam and the lifetime of muonic atoms to suppress prompt backgrounds

#### **Tracker**

- ≈20,000 straw tubes:
  - 5 mm diameter
  - 25 µm sense wire
  - 15 µm thick mylar walls
  - 80/20 Ar:CO<sub>2</sub>



- 18 stations of straw chambers
  - 3 m long
  - low effective mass
  - insensitive to <53 MeV electrons</li>





# Tracker Momentum Resolution Excellent momentum



#### Calorimeter

- Two disks placed behind the tracker
  - radii 36 to 70 cm
  - each disk: ≈800 BaF<sub>2</sub> crystals
  - crystals 3x3x20 cm (10 X<sub>0</sub>)



- Each BaF<sub>2</sub> crystal is readout by 2 APDs
  - APDs tailored to discriminate between fast and slow scintillating components
  - unprecedented sensitivity in the UV
  - capable of high rates



- The calorimeter provides independent timing and energy measurements (resolution  $\sigma(t)=0.5$  ns and  $\sigma(E)/E=5\%$ )
- The calorimeter contributes to particle identification and the trigger

#### **Further Instrumentation**

- Cosmic ray veto
  - Covers whole detector solenoid and downstream end of the transport solenoid
  - 4 layers of long scintillator strips with wavelength shifter and aluminum absorbers





- Muon stopping target monitor
  - measures delayed γ-rays from radioactive nuclei produced by nuclear muon captures
  - enables to determine the number of captured muons
  - $\rightarrow$  important as normalization for  $R_{\mu e}$



# **Background Estimates and Detection of the Signal**

Mu2e background estimates for 3 years of running:

|     | Category                                                                                   | Background process                    |       | Estimated yield (events)                       |
|-----|--------------------------------------------------------------------------------------------|---------------------------------------|-------|------------------------------------------------|
| 54% | Intrinsic                                                                                  | Muon decay-in-orbit (DIO)             |       | $0.199 \pm 0.092$                              |
|     | Late Arriving                                                                              | Muon capture (RMC) Pion capture (RPC) | •     |                                                |
|     | Muon decay-in-flight ( $\mu$ -DIF)<br>Pion decay-in-flight ( $\pi$ -DIF)<br>Beam electrons |                                       | )     | $<0.003$ $0.001 \pm < 0.001$ $0.003 \pm 0.001$ |
| 13% | Miscellaneous                                                                              | Antiproton induced                    |       | $0.047 \pm 0.024$                              |
| 25% |                                                                                            | Cosmic ray induced                    |       | $0.092 \pm 0.020$                              |
|     |                                                                                            |                                       | Total | $0.37 \pm 0.10$                                |

• Reconstructed simulated momentum spectra assuming  $R_{\mu e}=10^{-16}$ 



Separation of conversion from DIO electrons due to excellent momentum resolution

→ Signal is a peak over the background close to the endpoint

#### **Current Status**

- Testing of a transport solenoid coil prototype has started
- Construction of the detector building has started





- Preparations for DOE CD-3c "proceed with construction" review in early 2016
- The commissioning of the beam-line and detector are scheduled for 2020

# **Summary**

- Mu2e will search charged lepton flavor violation at unprecedented sensitivity
- Mu2e has a 5σ discovery sensitivity to all µ→e conversion rates greater than 2×10<sup>-16</sup> and probes effective mass scales of new physics up to the 10<sup>4</sup> TeV scale
- Expected sensitivity is  $R_{\mu e}(\mu N \to e N \, {\rm on \, Al}) < 6 \times 10^{-17}$  in 3 years running (improvement of 4 order of magnitude to previous experiments)
- Mu2e construction and next approval steps are proceeding on schedule
- Commissioning is scheduled for 2020

# **BACKUP**

# **Prospects of Charged Lepton Flavor Violation**



#### **Extinction Monitor**

 Extinction defined as number of protons striking the production target between beam pulses to the number of protons striking during the beam pulses



- For Mu2e an extinction of about 10<sup>-10</sup> is required to reduce the backgrounds induced by out of time particles to an acceptable level
- An extinction monitor will estimate the overall performance by monitoring the beam hitting the primary target