

Experimental Statusof the Scalar Sector

Pierre Savard
University of Toronto and TRIUMF

European Physical Society 27 July 2015

OUTLINE

Introduction

•125 GeV Higgs Properties

- Mass
- •Spin/CP
- Width and lifetime
- Differential cross sections
- Higgs couplings

Beyond the SM

- High mass searches
- •Implications of BSM Higgs physics from couplings
- Exotic decays

Conclusions and Outlook

INTRODUCTION

- •First Run 1 Higgs results with full dataset were first presented in March of 2013
- •In the last two years, detectors were recalibrated, reconstruction and analysis techniques were improved, and the data were re-analyzed

Error band scaled to get $\chi^2/dof = 1$ CMS Photon Performance: CERN-PH-EP-2015-006

- •The final Run 1 results are in general significantly better than those presented in early 2013
 - •Legacy papers on couplings and spin CP by CMS were submitted a few months ago: Phys. Rev. D. 92.012004., Eur. Phys. J. C (2015) 75-212
 - •Final results on Higgs spin CP and couplings from ATLAS recently submitted: arxiv:507.04548, arxiv:1506.05669

SM HIGGS BOSON PHYSICS

A comprehensive program to test the SM Higgs hypothesis:

- Precision mass measurements
- Measurement of couplings
 - Main production modesggH, WH, ZH, VBF, ttH
 - •Main decay modes:
 - •yy, WW, ZZ, tt, bb
- •Rare Decay modes:
 - •μμ, **Z**γ, **J**/ψ γ
- •Rare production modes:
 - •tH, hh, bbH
- Spin and CP-mixing properties
- •Width
 - Direct, off-shell couplings, interference, lifetime
- Fiducial and differential measurements

HIGGS MASS

The SM does not predict the Higgs boson mass: we need to measure it

Given a mass, we can make predictions* for the production cross section and decay rates

Higgs mass measurements (GeV):

ATLAS: $125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)}$

CMS: $125.02 \pm 0.27 \text{ (stat) } \pm 0.15 \text{ (syst)}$

LHC combination:

 $125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (syst)}$

Precision measurement: <0.2%

*a lot of progress by theory community, LHCXSWG. Improvements continue...

Impact of Higgs Mass Measurement on Electroweak Fits

Eur. Phys. J. C 74, 3046 (2014)

Higgs Production at the LHC

	process	8 TeV	13 TeV
ggF	gluon-gluon fusion	19 pb	44 pb
VBF	vector-boson fusion	1.6 pb	3.7 pb
VH	associated production	1.1 pb	2.2 pb
ttH	associated production	0.13 pb	0.51 pb
tH	Associated production	~20 fb	~90 fb

SM Production Modes $(M_H = 125 \text{ GeV})$

HIGGS DECAYS

•At $m_H = 125$ GeV, many decay channels can be studied

SM Decay Modes $(M_H = 125.1 \text{ GeV})$

Process	Br
bb	0.58
WW	0.22
ττ	0.06
ZZ	0.027
γγ	0.0023
$Z\gamma$	0.0016
μμ	0.0002

Main Production and Decays

Analyses performed by either ATLAS or CMS targeting specific production and decay modes

	WW	ZZ	γγ	bb	ττ
ggH	X	X	X		X
VBF	X	X	X	X	X
WH	X	X	X	X	X
ZH	X	X	X	X	X
ttH	X	X	X	X	X

50 OBSERVATION IN ALL DECAYS TO BOSONS

m₄₁ [GeV]

m_⊤ [GeV]

DECAYS TO FERMIONS (TT)

Significance obs. (exp.)

CMS: • 3.2 (3.7) σ

ATLAS: • 4.5 (3.4) σ

DECAYS TO FERMIONS (bb)

Significance obs. (exp.)

CMS(VH+VBF*+ttH):
• 2.6 (2.7) σ

Tevatron(VH)**:
• 2.2 (1.4) σ

ATLAS(VH+ttH):
• 1.8 (2.8) σ

*NEW! arXiv:1506.01010

**my estimate from: Phys. Rev. D 88, 052014 (2013)

ttH Associated Production

Test Yukawa coupling of the top quark (large! ~1.0 in the SM)

Production cross section is small (<1% of ggH) but spectacular final state

Very large top background...

Combination of signal strengths:

CMS: $\mu = 2.8 + / -1.0$

ATLAS: $\mu = 1.8 + - 0.8$

ttH Associated Production

Test Yukawa coupling of the top quark (~1.0 in the SM)

Production cross section is small (<1% of ggH) but spectacular final state

Very large top background...

Combination of signal strengths:

CMS: $\mu = 2.8 + / -1.0$

ATLAS: $\mu = 1.8 + - 0.8$

STATUS OF SM RARE DECAYS

Searches for rare decays performed in various channels

Observation of these decays in Run 1 would signal BSM physics

Non-universal coupling of Higgs to leptons:

• $\mu\mu$ signal would be 280 times larger than SM if μ coupling was equal to that of τ

Process	limit (times SM)
μμ (ATLAS)	7.0
μμ (CMS)	7.4
Zγ (ATLAS)	11
Zγ (CMS)	9
γγ* (CMS)	7.7
J/ψγ (ATLAS)	540
J/ψγ (CMS)	540
ee(CMS)	10 ⁵

SPIN/CP HYPOTHESES TESTS

Tests of spin/CP properties performed in ZZ, γγ, WW channels

ZZ: full kinematic information available for spin/CP determination

WW spin information from kinematic variables

FIXED SPIN AND PARITY TESTS

Test alternative fixed spin and parity hypotheses relative to the SM 0+ hypothesis

Results favour the spin 0+ hypothesis

Alternatives: 0-, 1-, 1+, various spin 2 models are typically excluded at > 99.9% CL

Large anomalous couplings are excluded. Next step: look for presence of smaller contributions

$$\tilde{q} = \log \frac{\mathcal{L}(J_{\text{SM}}^P, \hat{\hat{\mu}}_{J_{\text{SM}}^P}, \hat{\hat{\theta}}_{J_{\text{SM}}^P})}{\mathcal{L}(J_{\text{alt}}^P, \hat{\hat{\mu}}_{J_{\text{alt}}^P}, \hat{\hat{\theta}}_{J_{\text{alt}}^P})}$$

Also Tevatron results: **PRL 114, 151802 (2015)**

CP MIXING RESULTS

Probe potential CP-mixing and tensor structure of Higgs interactions

•Amplitude describing interaction between a spin 0 and two spin 1 particles:

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

$$\text{BSM CP-even} \quad \text{BSM CP-odd}$$

ATLAS: different formulation (see backup), but results can be compared

No significant contributions from BSM terms are observed (yet...)

BSM CP-even (95% CL)

CMS
$$f_{a2}\cos(\phi_{a2}) \in [-0.11, 0.17]$$

ATLAS $f_{a2} < 0.12$ for $\phi_{a2} = 0$
 $f_{a2} < 0.16$ for $\phi_{a2} = \pi$

BSM CP-odd (95% CL)

CMS $f_{a3}\cos(\phi_{a3}) \in [-0.27, 0.28]$

ATLAS $f_{a3} < 0.090$ for $\phi_{a3} = 0$
 $f_{a3} < 0.41$ for $\phi_{a3} = \pi$

DIFFERENTIAL CROSS SECTIONS (ATLAS)

SM Higgs theory predictions for kinematics: combination of $\gamma\gamma$ and ZZ

DIFFERENTIAL CROSS SECTIONS AND EFT

- Study tensor structure and strength of Higgs interactions in the context of an Effective Field Theory framework
- Use Strongly Interacting Light Higgs (SILH) formulation:

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}$$

$$+ \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}$$

Statistical combination of 5 $\gamma\gamma$ input variables:

EFT papers: JHEP 07(2015) 035 JHEP 06(2007) 045

WIDTH AND LIFETIME

Higgs width measurements at LHC:

- Direct (limit at 95% CL obs. (exp.))
 - •CMS (γγ +ZZ): 1.7 (2.3) GeV
 - •ATLAS:
 - •ZZ: 2.6 (6.2) GeV
 - •γγ: 5.0 (6.2) GeV
- •Via off-shell couplings:

Direct measurement of Off Shell couplings (independent of width)

•Measure width assuming SM running (or measure running assuming width)

Assuming* $\mu_{OffShell} = \mu_{OnShell}$

•CMS: 22 (33) MeV (95%CL)

•ATLAS: 23 (33) MeV (95%CL)

at HL-LHC*:

 $\Gamma = 4.1^{+1.5}_{-2.1} Mev$

- •Interference in γγ (signal continuum)
 - •Expected mass shift ~50 MeV (ATL-PHYS-PUB-2013-014)
 - •No assumptions but small effect
- Lifetime (Next slide)

*ATL-PHYS-PUB-2013-014

SM width (m_H=125.1 GeV): 4.1 MeV

WIDTH: LIFETIME AND OFF-SHELL COUPLINGS (CMS)

SM lifetime ($m_H = 125 \text{ GeV}$): $1.6 \times 10^{-7} \text{ fs}$

Measure flight distance in the detector using H->ZZ->4l channel $\tau(H) < 190$ fs at 95% CL $\Gamma(H) > 3.9 \times 10^{-9}$ MeV

Enhancement of off-shell production possible through anomalous HVV couplings:

$$\begin{split} A(\text{HVV}) \propto \left[a_1 - e^{i\phi_{\Lambda Q}} \frac{(q_{\text{V}1} + q_{\text{V}2})^2}{\left(\Lambda_Q\right)^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{\text{V}1}^2 + q_{\text{V}2}^2)}{\left(\Lambda_1\right)^2} \right] m_{\text{V}}^2 \epsilon_{\text{V}1}^* \epsilon_{\text{V}2}^* \\ + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \,, \end{split}$$

Width derived with/without profiling of cross section fraction: m_{T}^4/Λ_0^4

$$f_{\Lambda Q} = \frac{m_{\rm H}^4/\Lambda_Q^4}{|a_1|^2 + m_{\rm H}^4/\Lambda_Q^4}$$

COMBINATION OF SIGNAL STRENGTHS

- •We measure event yields n_{evt} and we need to extract signal yields n_s
 - •Estimate and subtract backgrounds $n_s = n_{evt} n_{bkg}$
- Production mode categories c are contaminated by other signal processes
- Global fit to all categories can take into account all contributions and correlations

We extract the signal strength μ : ratio of the observed yield to the SM prediction

$$n_s^{c,i} = \sum_{p} \left[\mu^p \mu_{BR}^i \right] \times (\sigma^p \times Br^i)_{SM} \times A_p^{c,i} \times \mathcal{E}_p^{c,i} \times Lumi$$
$$p \in (ggF, VBF, VH, ttH) \quad i \in (\gamma \gamma, ZZ, WW, bb, \tau \tau)$$

SIGNAL STRENGTH FOR PRODUCTION MODES

Obtain production signal strengths assuming SM ratios for branching ratios

SIGNAL STRENGTH FOR DECAY MODES

ATLAS: individual μ values from combination of channels

CMS: individual μ values from tagged analyses

COUPLINGS FRAMEWORK

•
$$y_b$$
: = $\kappa_b y_b^{SM}$

assuming no BSM particles in the loops

$$\kappa_g^2 \propto 1.06 \times \kappa_t^2 - 0.07 \times \kappa_t \kappa_b + 0.01 \times \kappa_b^2$$
$$\kappa_\gamma^2 \propto 1.6 \times \kappa_W^2 - 0.7 \times \kappa_t \kappa_W + 0.1 \times \kappa_t^2$$

- •" κ framework": interpret signal strength parameters ($\mu_{p'}$ μ^{i}_{BR}) in terms of modifiers to the SM couplings:
- •Decay: $\Gamma_i = \kappa_i^2 \Gamma_i^{SM}$
- •Production: $\sigma_i = \kappa_i^2 \sigma_i^{SM}$
- •Width: $\Gamma_{\rm H} = \Sigma_{\rm i} \, \kappa_{\rm i}^2 \, \Gamma_{\rm i}^{\rm SM}$

Assumptions (see LHCXSWG YR3):

- Only one Higgs
- •SM production and decay kinematics
 - Tensor structure is that of SM
 - •0+ scalar
- Narrow resonance

COUPLING TO FERMIONS AND BOSONS

Test gauge vs Yukawa couplings

- •Assumptions:
 - •Common scaling factor for fermions and gauge bosons:
 - • κ_F and κ_V
 - No BSM contributions to width
 - No BSM contributions to loops
- •Interference in $\gamma\gamma,$ tH, gg->ZH can resolve relative sign between κ_F and κ_V
- Results compatible with SM

COUPLINGS WITH SM PARTICLE CONTENT

"Absolute couplings". Assumptions:

- No contributions to width from BSM particles
- No contributions to loops from BSM particles

UP/DOWN AND LEPTON QUARK COUPLINGS

Check coupling ratios between up-type and down-type fermions (left) and quarks and leptons (right)

motivated by e.g. two Higgs doublet scenarios

NEW PHYSICS IN LOOPS?

Test for "heavy" BSM physics (BSM particles $> m_H/2$) with possible contributions to ggH, Hyy (and HZy) loops

- Assume no contributions to width from BSM particles (discussed later)
- Assume SM couplings for known particles

$$\frac{(\sigma \cdot BR) (gg \to H \to \gamma \gamma)}{\sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

Most General Fit

- No assumptions on particle content in loops
- No assumptions on BSM decay or Higgs width

Drawback: can only fit ratios

BSM HIGGS PHYSICS

3.

Does the Higgs sector extend beyond the single doublet of the SM?

Different strategies:

- 1. Search for another Higgs boson
- 2. Search for exotic decays of the 125 Higgs
- Use the 125 GeV Higgs as a tool to find new physics
 - Tag a Higgs in decay chains
 Use SM Higgs measurements to constrain BSM scenarios (observed Higgs constrains BSM parameter space)

BSM HIGGS SEARCHES

A non-exhaustive list... Many of the searches below were performed in Run 1

	H/A→(b)tt (LL,LH,HH)	
Neutral Heavy Higgs to	H/A → (b)μμ	
Fermions	H/A → (b)bb	
	H/A → tt	
	H ≻ γγ	
	H → ZZ → 4l	
Neutral Heavy	H+ZZ+llvv	
Higgs to	H → ZZ → llqq	
Bosons	H→ZZ→vvqq	
	H→WW→lvlv	
	H→WW→lvqq	
	(H→)hh→γγbb	
	(H →)hh→4b	
Neutral Heavy Higgs to	(H→)hh→bbττ	
Bosons, including light	(H→)hh→VVγγ→4jγγ,	
Higgs	(H→)hh→WWγγ→lνqqγγ	
	A→Zh→Ilττ (LL,LH,HH)	
	A→Zh→(II/vv)bb	

BSM HIGGS SEARCHES

A non-exhaustive list... Many of the searches below were performed in Run 1

BSM HIGGS SEARCHES

A non-exhaustive list... Many of the searches below were performed in Run 1

HIGH MASS SEARCHES: WW/ZZ (CMS)

Search for a SM-like Higgs boson decaying to WW or ZZ final states:

- •WW->|v|v
- •WW->lvjj
- •ZZ->IIII
- •ZZ-> $||\tau\tau$
- •ZZ->||vv|
- •ZZ->llqq
- Search for electroweak singlet
 - $\cdot C'^2 + C^2 = 1$
 - •C: SM coupling
 - •B_{new}: BR to non-SM

HIGH MASS SEARCHES: WW/ZZ (ATLAS)

High mass searches in WW and ZZ final states

- •WW->|v|v
- •WW->Ivji
- •ZZ->IIII
- •ZZ->||vv||
- •ZZ->llqq
- Limits given for narrow width signal
- No significant deviations observed

A->TT (LOW/HIGH MASS)

Search for pseudoscalar (A) boson decaying to τ leptons

•Sensitive in high tan(β) regime Searches performed at high and low mass

Results interpreted in the context of SUSY scenarios. Limits given on σ x BR

A->ZH (CMS)

- •If $M_{SUSY} > 1$ TeV, low values of $tan(\beta)$ can accomodate mH = 125 GeV
- •Decays A->ZH, H->hh can have sizable branching ratios if m_A , $m_H < 2m_{top}$
- •Look at AZ->(ee,μμ)ττ final states

A->ZH, H->hh (CMS)

Combination of two analyses ($Il\tau\tau,\tau\tau$ bb) performed in the context of two BSM scenarios:

- •MSSM low tan(b)-> M_{SUSY} consistent with $m_h=125$ GeV
- •2HDM (Type II). Assume $m_H = m_A = m_{H+}$

BSM CONSTRAINTS FROM COUPLINGS (ATLAS)

Measurements of the discovered Higgs boson can constrain parameters in various BSM scenarios (asymmetry)

•Right: 2HDM (type I and II)

Below: simplified SUSY model hMSSM

INVISIBLE DECAYS: DIRECT SEARCHES

SM BR to invisible: 0.1% (ZZ->4 ν)

Weak vector boson fusion is the most sensitive production mode

- •Require E_TMiss and VBF signature:
 - •Large separation between jets in η
 - Large mjj
- •Main backgrounds:
 - •Z(vv)+jets, W(lv)+jets
- •Results (95% CL) on BR:
 - •ATLAS: 28% (31% exp.)
 - •CMS: 58 % (40% exp.)
- •ATLAS combination with Z(II)H and V(jj)H: BR(inv) < 25% (27% exp.) at 95% CL

LEPTON FLAVOUR VIOLATING DECAYS

Search for LFV violating Higgs decays to $\tau\mu$ in hadronic τ decays (CMS and ATLAS) and leptonic τ decays (CMS)

Some excess is observed: to be followed-up in Run 2

CMS

$\mu au_{ m e}$	$0.87^{+0.66}_{-0.62}$	$0.81^{+0.85}_{-0.78}$	$0.05^{+1.58}_{-0.97}$
$\mu au_{ m h}$	$0.41^{+1.20}_{-1.22}$	$0.21^{+1.03}_{-1.09}$	$1.48^{+1.16}_{-0.93}$
μτ		$0.84^{+0.39}_{-0.37}$	

ATLAS

•Best fit BR: 0.77 +/- 0.62 %

•Limit: 1.85 % @ 95% CL (1.24% Exp.)

CONCLUSIONS

- •A lot of progress made since the discovery 3 years ago
 - The measurements of the production and decay properties of the Higgs boson are consistent with SM predictions
 - •The SM 0+ hypothesis is preferred over all other tested spin/parity alternatives (almost all excluded at > 95% CL)
 - Coupling strengths consistent with SM
 - •No evidence of BSM physics in the scalar sector (yet...)
- •Realization of Run 1 Higgs physics program made possible thanks to outstanding performance of the LHC
- •We have a very exciting and challenging Higgs physics program for Run II

Backup Slides

Mono-Higgs (ATLAS)

- •Search for the production of invisible particles in association with a Higgs boson in H->γγ channel
- •Require:
 - $p_{T}(\gamma\gamma) > 70 \text{ GeV}$
 - $\bullet E_T(Miss) > 90 \text{ GeV}$
- •Main SM background:
 - •ZH -> ννγγ (irreducible)
 - •WH ->Ινγγ (lost lepton)
- •Results interpreted in context of suppression scale Λ for given EFT operators.

Example:

q, g

HIGGS DECAY TO $\gamma(\gamma) + E_T(MISS)$ (CMS)

In some SUSY scenarios, the gravitino is the Dark Matter candidate, with final states with ETMiss + photon(s)

Selections target ggH and ZH channels

Backgrounds ggH:

•Backgrounds ZH:

• $Z(vv)+\gamma$

•Ζγ

·Mono-e

•Z+jets

Mono jet

• ZW, ZZ

•G+jet

Non-resonant dilepton

See also: ATLAS-CONF-2015-001

STATUS OF RARE SM DECAYS: μμ

$\mu^+\mu^-$ analysis:

- 2 analysis channels (ggF and VBF)
- Analytic background model (similar to γγ)

Results at 95% CL:

 $\sigma.Br < 7.0 (7.2)(\sigma.Br)_{SM}$

Universal couplings (same as τ lepton) would imply signal ~280 times SM

PLB

PLB 732 (2014)

Results at 95% CL:

 σ .Br < 7.4 (6.5)(σ .Br)_{SM}

48

STATUS OF RARE SM DECAYS: ZY

Zγ analysis strategy

- Detector and p_⊤ categories
- Analytic background model (similarly to γγ)

Results at 95% CL:

 σ .Br < 9 (9)(σ .Br)_{SM}

PLB 732 (2014)

Results, 95% CL: σ .Br < 11 (9)(σ .Br)_{SM}

CMS CP MIXING RESULTS

Probe potential CP-mixing and tensor structure of Higgs interactions

•Amplitude describing interaction between a spin 0 and two spin 1 particles:

$$A(HVV) \sim \left[a_{1}^{VV} + \frac{\kappa_{1}^{VV} q_{V1}^{2} + \kappa_{2}^{VV} q_{V2}^{2}}{(\Lambda_{1}^{VV})^{2}} \right] m_{V1}^{2} \varepsilon_{V2}^{*} + a_{2}^{VV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

$$f_{\Lambda 1} = \frac{\sigma_{\Lambda 1} / (\Lambda_{1})^{*}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{\Lambda 1}, \quad \sigma_{i} : XS \text{ for } a_{i} = 1$$

$$f_{a2} = \frac{|a_{2}|^{2} \sigma_{2}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{a3} = \arg\left(\frac{a_{2}}{a_{1}}\right)$$

$$f_{a3} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{a3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$c_{MS} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{a3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$g_{\Lambda} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{a3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$g_{\Lambda} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{a3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$g_{\Lambda} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{a3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$g_{\Lambda} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{\alpha 3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$g_{\Lambda} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{\alpha 3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$g_{\Lambda} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + \tilde{\sigma}_{\Lambda 1} / (\Lambda_{1})^{4} + \dots}, \quad \phi_{\alpha 3} = \frac{|a_{3}|^{2} \sigma_{3} + |a_{3}|^{2} \sigma_{3} + |a$$

ATLAS CP MIXING RESULTS

Lagrangian describing interaction between a spin 0 and a pair of W or Z bosons (from JHEP 1311 (2013) 043):

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\text{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right.$$

$$\left. - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} X_{0}.$$

J^P	Model	Choice of tensor couplings				
		KSM	κ_{HVV}	K_{AVV}	α	
0+	Standard Model Higgs boson	1	0	0	0	
0_h^+	BSM spin-0 CP-even	0	1	0	0	
0=	BSM spin-0 CP-odd	0	0	1	$\pi/2$	

CMS/ATLAS comparison (Michael Duehrssen)

No significant contributions from BSM terms are observed

ATLAS paper: JHEP 1311 (2013) 043

BSM CP-even (95% CL)
CMS
$$f_{a2}\cos(\phi_{a2}) \in [-0.11, 0.17]$$

ATLAS $f_{a2} < 0.12$ for $\phi_{a2} = 0$
 $f_{a2} < 0.16$ for $\phi_{a2} = \pi$
BSM CP-odd (95% CL)
CMS $f_{a3}\cos(\phi_{a3}) \in [-0.27, 0.28]$
ATLAS $f_{a3} < 0.090$ for $\phi_{a3} = 0$

 $f_{a3} < 0.41$ for $\phi_{a3} = \pi$

GLUON FUSION VS VBF

Calculate production ratios for each final state:

•Branching ratios cancel:

$$\frac{\mu_{VBF+VH}^{i}}{\mu_{ggF+ttH}^{i}} = \frac{\mu_{VBF+VH}}{\mu_{ggF+ttH}}$$

CMS Result: $1.25^{+0.62}_{-0.44}$

ATLAS Result: 0.96 +0.43 -0.31

CMS VBF significance: 3.7σ (3.3σ expected) (assuming SM BRs)

ATLAS VBF significance: 4.3σ (3.8σ expected)

NEW PHYSICS IN PRODUCTION OR DECAY?

Allow for contributions from BSM particles with mass $< m_H/2$

- •Relax assumption on the width
- •Right plots : include direct limits

Run 3 and Beyond

Ongoing studies of Higgs physics potential at high luminosity

ATLAS Simulation Preliminary

 $\Delta \mu / \mu$