EPS-HEP 2015, July 22-29 2015, Vienna, Austria

Search for the Standard Model Higgs boson produced in association with top quarks and decaying into a bb-pair at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC

Leonid Serkin

INFN Gruppo Collegato di Udine and ICTP Trieste, Italy

multiplicity

Jet

1. Motivation

• Convincing evidence of SM Higgs boson [1] \rightarrow presented here: associated top-Higgs production \rightarrow decay studied: $t\bar{t}H \rightarrow l^{\pm}\nu q\bar{q}bb(H \rightarrow b\bar{b})$, with $l=e,\mu$ \rightarrow gives access to top-Higgs and H-b Yukawa couplings

2. Signal and Backgrounds

Focus in the Lepton+Jets final states: W

- Signatures \rightarrow High p_T isolated lepton $\rightarrow E_{T}^{miss}$ $\rightarrow \geq 4$ jets (≥ 2 b-jets)
- Backgrounds \rightarrow <u>irreducible</u>: tt + bb (~30x) \rightarrow <u>irreducible</u>: tt + W/Z (~1x)

 \rightarrow 2 Matrix Element Method (MEM) variables used

Variable		1111111		
variable	\geq 6j, \geq 4b	\geq 6j, 3b	$5j, \ge 4b$	5j, 3b
D1	1	10	8 	-
Centrality	2	2	1	-
$p_{ m T}^{ m jet5}$	3	7	-	-
H1	4	3	2	-
$\Delta R_{ m bb}^{ m avg}$	5	6	5	-
SSLL	6	4	-	8
$m_{\rm bb}^{\rm min~\Delta R}$	7	12	4	4
$m_{ m bj}^{ m max\ p_T}$	8	8	-	-
$\Delta R_{\rm bb}^{\rm max~p_{\rm T}}$	9	-	-	-
$\Delta R_{\rm lep-bb}^{\rm min\ \Delta R}$	10	11	10	
$m_{\rm uu}^{\rm min~\Delta R}$	11	9	-	2
$\rm Aplan_{b-jet}$	12	-	8	-
$N_{40}^{ m jet}$	-	1	3	-
$m_{ m bj}^{ m min \ \Delta R}$	-	5	-	-

7

9

-

 $m_{\rm ii}^{
m max \ p_T}$ $H_{\mathrm{T}}^{\mathrm{had}}$

 $m_{\rm ij}^{\rm min \ \Delta R}$

 $m_{
m bb}^{
m max\ p_T}$

 $p_{\rm T,uu}^{\rm min\,\Delta R}$

 $m_{\rm bb}^{
m max\ m}$

 $\Delta R_{\mathrm{uu}}^{\mathrm{min}\ \Delta \mathrm{R}}$

Number of b-tagged jets

• Categorization in 9 independent topologies \rightarrow simultaneous template fit to multiple regions

	2 b-tags	3 b-tags	≥4 b-tags
4 jets	$\mathbf{H}_{\mathbf{T}}$	H _T	$\mathbf{H}_{\mathbf{T}}$
5 jets	H _T	NN-HF	NN
\geq 6 jets	$\mathbf{H}_{\mathbf{T}}$	NN _{with MEM}	NN _{with MEM}

as input to the NN in the most signal-like regions

• Achieving good signal/bkg separation \rightarrow Using NLO MCs for both predictions

 H_T = scalar sum of jet transverse momenta

4. Systematic uncertainties

• $N \equiv normalization$

Detector

Top-pair

bkg

Small

Signal

• SN \equiv shape and normalization

		Systematic uncertainty	Type	Comp.		•••
		Luminosity	Ν	1	1111	Jd
		Physics Objects				
		Electron	SN	5		
		Muon	SN	6		
		Jet energy scale	SN	22		
t t		Jet vertex fraction	SN	1		
	\neg	Jet energy resolution	SN	1		1
O		Jet reconstruction	SN	1		
		<i>b</i> -tagging efficiency	SN	6		
\circ		c-tagging efficiency	SN	4		
		Light-jet tagging efficiency	SN	12		
		High- $p_{\rm T}$ tagging efficiency	SN	1		
		Background Model				
0ď		$t\bar{t}$ cross section	Ν	1		_
		$t\bar{t}$ modelling: $p_{\rm T}$ reweighting	SN	9	tī+	-bb s
•		$t\bar{t}$ modelling: parton shower	SN	3		
	\neg	$t\bar{t}$ +heavy-flavour: normalisation	Ν	2		
		$t\bar{t}+c\bar{c}$: $p_{\rm T}$ reweighting	SN	2		
		$t\bar{t}+c\bar{c}$: generator	SN	4		t
		$t\bar{t}+b\bar{b}$: NLO Shape	SN	8		
		W+jets normalisation	Ν	3		_
		$W p_{\rm T}$ reweighting	SN	1		tī+
		Z+jets normalisation	Ν	3	tī-	+bb
Ļ		$Z p_{\rm T}$ reweighting	SN	1		
		Lepton misID normalisation	Ν	3		
Ŭ	\neg	Lepton misID shape	\mathbf{S}	3		
		Single top cross section	Ν	1		
n		Single top model	SN	1		
		Diboson+jets normalisation	Ν	3		
		$t\bar{t} + V$ cross section	Ν	1		
að		$t\bar{t} + V$ model	SN	1		
		Signal Model				
•		$t\bar{t}H$ scale	SN	2		_
G	\neg	$t\bar{t}H$ generator	SN	1	S	io
		$t\bar{t}H$ hadronisation	SN	- 1	N	•8
		$t\bar{t}H$ PDF	SN	1		
T				-		

6. Prospects for the future

• Ratio of $\sigma_{t\bar{t}H}(13 \text{ TeV} / 8 \text{ TeV}) \approx 3.9$ will hugely increase the potential of ttH bremsstrahlung measurement at the LHC

[1] ATLAS Collaboration: arXiv:1408.7084, arXiv:1408.5191, arXiv:1409.6212 [hep-ex], ATLAS-CONF-2014-060, ATLAS-CONF-2014-061 (2014).

[2] Phi-T GmbH, NeuroBayes package. [3] ATLAS Collaboration, arXiv:1503.05066 [hep-ex]