

Contribution ID: 512 Type: talk

New results on two-particle correlations in proton-proton collisions at 13 TeV from ATLAS at the LHC

Friday 24 July 2015 11:30 (20 minutes)

The measurement of centrality and pseudorapidity dependence of the p_T -integrated flow harmonics, v_2 up to v_5 , in Pb+Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV with the ATLAS detector at the LHC are presented. These measurements give a clear picture of the average geometry as well as fluctuations in it. These measurements are extended to include the correlations between flow harmonics of different order, which are sensitive to quantum fluctuations in the initial geometry and hydrodynamic response in the final state collective expansion. The results include correlations of v_2-v_n and v_3-v_n (n=2-5) obtained by varying the event ellipticity in narrow centrality intervals using an event-shape engineering technique. Several unique features in these correlations suggest new sources of geometrical fluctuations in the initial state.

Recent measurements of the ridge correlations and associated first five azimuthal harmonics (v_1-v_5) in p+Pb collisions are also presented. The v_n results are shown as a function of pT, η and event activity providing important constraints on the hydrodynamic model of collective flow in small systems. The non-zero double-ridge amplitudes and v_n are found to exist up to pT of ~10 GeV. A simple conformal scaling pattern in the pT dependence is observed for v_2-v_4 between p+Pb and Pb+Pb with similar event activity, suggesting similar hydrodynamic response and non-linear mode-mixing effects in the 2 collision systems.

additional information

Submitted on behalf of the ATLAS Heavy Ion Physics Group by the ATLAS Speakers Committee representative Alex Read (a.l.read@fys.uio.no). Alex is NOT the speaker!

Author: ARRATIA, Miguel (University of Cambridge (GB))

Presenter: ARRATIA, Miguel (University of Cambridge (GB))

Session Classification: Heavy Ion Physics

Track Classification: Heavy Ion Physics