EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS 2015 222 - 29 JULY 2015 VIENNA, AUSTRIA

Jet results in heavy ion collisions with the ATLAS experiment at the LHC

Dennis V. Perepelitsa for the ATLAS Collaboration Brookhaven National Laboratory

EPS-HEP Conference 23 July 2015 Vienna, Austria

ATLAS

EXPERIMENT

Jet probes of hot and cold nuclear matter

- LHC Run I heavy ion data sets:
 - Pb+Pb @ 2.76 TeV, ∫Ldt = 140 µb⁻¹ in 2011
 - p+Pb @ 5.02 TeV, $\int \mathcal{L} dt = 28 nb^{-1} in 2013$
 - *pp* @ 2.76 TeV, ∫**L**dt = 4.0 pb⁻¹ in 2013
- I will highlight some of the **latest jet results** (<1 year)
- For more information (and electroweak boson, single hadron, heavy flavor, quarkonia, flow and correlation measurements), see:
 - \Rightarrow <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u> \leftarrow

• **∢**••○ ⊅

Jets in hot nuclear matter

- How does jet reconstruction perform in a heavy ion environment?
 - technical note on jet energy scale uncertainty ATLAS-CONF-2015-016
- What can Run I data teach us about inclusive jet suppression?
 - ➡ measurement of jet R_{AA} vs. p_T, rapidity, centrality PRL 114 (2015) 072302
- Do we understand the **path length dependence** of energy loss?
 - measurement of dijet asymmetry vs. reaction plane ATLAS-CONF-2015-021
 - measurement of multi-jet production hep-ph/1506.08656

Jet measurements in ATLAS

- Jets are built with the anti-k_t algorithm from 0.1x0.1 towers in the EM+HCals
- Estimate & subtract correlated, ηdependent, underlying event
 - and <u>reject "fake jets"</u> arising from localized UE fluctuations
- Early performance in Pb+Pb collisions
 - experimental control of R=0.4 spectrum down to 40 GeV
 - but without rigorously determined JES uncertainty

ATLAS-CONF-2014-016

- First, establish control in pp collisions at $\sqrt{s} = 8$ TeV:
 - fix <u>Heavy lon</u>-style jet Escale to the <u>Standard Model</u>style jet E-scale
 - derive "cross-calibration"
 factor to inherit effects of *in* situ corrections
- To constrain flavor
 dependence, study HI vs. SM scale in γ-jet and Z-jet events
 - → and in situ γ -jet at lower \sqrt{s}

NEW

ATLAS-CONF-2014-016

- Response to quenched jets constrained via:
 - simulations tuned to reproduce quenching observables
 - calo-jet/track-jet energy scale check, after correcting for effects of modified fragmentation function
- p_T -, η -, centrality-dependent jet energy scale uncertainty for pp, p+Pb, Pb+Pb collisions state of the art!

Inclusive jet suppression ca. 2013

• Fully corrected R_{CP} for R=0.4jets, relative to the 60-80% bin

$$R_{CP} = \frac{dN^{cent.}/dp_T / < T_{AA}^{cent.}}{dN^{peri.}/dp_T / < T_{AA}^{peri.}}$$

- Factor of 2 suppression in central events
- weak p_T dependence from <u>40</u> <u>to 200 GeV</u>, within $|y^*| < 2.1$

PRL 114 (2015) 072302

d*Ncent.*/d*p*⊤

• High statistics *pp* data & JES uncertainty allows for measurement of the: $R_{AA} =$ $< T_{AA}$ cent.> dopp/dpt

- <u>40-400 GeV</u>
- <u>differential in rapidity</u>
 - legacy measurement for Run I!
- centrality-dependent suppression, with modest $p_{\rm T}$ dependence

PRL 114 (2015) 072302

- Substantial insight from a rapidity-differential measurement:
 - different shape of initial jet spectrum before quenching
 - → different quark/gluon mixture at fixed p_T
 - different path length seen by jets

should we expect this? which models can explain this?

hep-ex/1411.2357

Path length dependence of quenching

- Previous studies of jet yield vs. $\Delta \phi = \phi^{jet} \Psi_2$, and jet v_2
 - energy loss has modest but non-zero dependence on path length
 - two new ATLAS measurements to elucidate this...

NEW Dijet asymmetry vs. event-plane

(statistical uncertainties only)

- Dijet asymmetry $A_J = (E_{T,1} E_{T,2}) / (E_{T,1} + E_{T,2})$
 - sensitive to path length differences event-by-event
 - certainly sensitive to centrality, but how about $\Delta \phi$?

NEW Dijet asymmetry vs. event-plane

NEW Dijet asymmetry vs. event-plane

- Extract reaction plane dependence via c_2 where $\langle A_J \rangle (\Delta \phi) = \langle A_J \rangle_0 (1 + 2c_2 \cos(2\Delta \phi))$
- Shown here vs. centrality for three choices of cone size R
 - ➡ c2 is negative, and reaches a maximum for 40-60% collisions

NEW

hep-ph/1506.08656

Nearby jet production

- Nearby jets arise from hard radiation early in a parton shower
 - their production is an intriguing test of path length dependence

- Obsertables Superinspired from, e.g. D0 measurements of nearby jet production to infer as
- Given a "test" jet with *E*^{test}, what i9 the probability to have a "neighboring" jet with some *E*^{nbr}?
 anti-k, d=0.4
 different asless how with terest of the solution of the solut

hep-ph/1506.08656 Nearby jet production

Nearby jet production

hep-ph/1506.08656

- Now plot central/peripheral ratio as a function of <u>nearby</u> jet E_T^{nbr}
- This quantity rises and reaches unity when $E_T^{\text{test}} \approx E_T^{\text{nbr}}$
 - → suggesting that jets with the same "unquenched" p_T and path length are quenched in the same way

Jets in cold nuclear matter

- Are rates of jet and hadron production modified in the cold nuclear environment?
 - measurement of the p+Pb jet fragmentation function ATLAS-CONF-2015-022
- What is the correlation between hard scattering and soft production in pp collisions?
 - forward energy production in pp collisions ATLAS-CONF-2015-019

Jet and hadron production

- Unmodified jet R_{pPb} but possible enhancement in hadron R_{pPb}
 - notably outside of what global nPDF fits can accommodate
- Necessitates measurement of the fragmentation function

• D(z), $z = p_T^{track} / p_T^{jet}$, for $p_T > 3$ GeV charged hadrons

- ➡ measured in 5.02 TeV p+Pb and 2.76 TeV pp collisions,
- → differentially vs. jet p_T

- MC-based extrapolation used to transform 2.76 TeV data to 5.02 TeV $R_{D(z)} = D(z; 5 \text{ TeV})_{p+Pb} / D(z; 2.76 \text{ TeV})_{pp} \times [D(z; 2.76 \text{ TeV})_{PYTHIA} / D(z; 5 \text{ TeV})_{PYTHIA}]$
- This initial study does not exclude a possible z-dependent excess
 - ➡ 5 TeV pp reference data in Run 2 crucial to have the full story

Understanding centrality-dependence of jet production in *p*+Pb

- Suppressed R_{CP} (centrality characterized with ΣE_T at Pbgoing pseudorapidity) and forward (*p*-going) jet production
 - → single trend as a function of $p_T \times \cosh(y^*) \approx x_p / (\sqrt{s} / 2)$

ATLAS-CONF-2015-019

(a) *p*+Pb collision

- Experimental signature in p+Pb: decreasing ΣE_T with increasing proton x
 - does this just arise from a feature of pp collisions?

ATLAS-CONF-2015-019

(b) pp collision

- Measure ΣE_T at large pseudorapidity as a function of:
 - → x_{proj} (e.g. in the proton moving *away* from ΣE_T region)
 - → x_{targ} (e.g. in the proton moving *towards* ΣE_T region)
- Reconstruct event-by-event e.g. $x_{proj} = p_T (exp(+\eta_1) + exp(+\eta_2)) / \sqrt{s}$

• In *pp* collisions, $\langle \Sigma E_T \rangle$ falls with x_{targ} , mostly insensitive to x_{proj}

➡ so the p+Pb effect does not obviously reflect something in pp 24

Jet measurements in LHC Run 2

talk at QC

at

- 5 TeV Pb+Pb collisions, Nov. 2015: 30x the hard probe rate in Run I
- Differential looks at Run I quantities and entirely new Run 2 observables 26

Outlook

- Jet probes of heavy ion collisions in ATLAS are providing detailed information about the physics of jet quenching
 - producing "legacy" Run I results (e.g. inclusive jet suppression)
 - while still exploring imaginative new measurements (e.g. reaction plane dependent asymmetries)
- Jet probes of small collision systems are revealing unexpected phenomena
- Imminent Run II data (Pb+Pb and pp) will substantially increase our knowledge of both systems

 \Rightarrow <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u> \leftarrow