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Instituto de F́ısica Teórica UAM-CSIC, Madrid
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Introduction Lattice calculation Results

Large-N volume independence

Eguchi, Kawai, 82: Consider two pure gauge lattice theories:

SYM = β
∑

x,µ<ν(1− 1
NReTrU

�
x,µν)

SEK = β
∑
µ<ν(1− 1

NReTrU
�
µν)

They satisfy the same loop equations in N →∞ ⇔ no
spontaneous breaking of (ZN)4 → U(1)4 center symmetry

In fact, the symmetry is broken in EK model (Bhanot, Heller,
Neuberger, 82).

One possible fix (Gonzalez-Arroyo, Okawa, 83, 10): add
twisted boundary conditions to the model:

STEK = β
∑
µ<ν(1− 1

N zµνReTrUµUνU
†
µU

†
ν)

Can be used to calculate Wilson loop expectation values, as
well as meson correlators in momentum space.
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Introduction Lattice calculation Results

Large-N volume independence
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Introduction Lattice calculation Results

Finite-N volume (in-)dependence

Large-N volume independence strictly true only in the limit
N →∞.

What is the situation when working with N <∞? Can we
quantitatively define some effective system size Leff(N)?

Yes, when using twisted boundary conditions!

Twisted PT allows interchanging of L and N, physics depends
on the product N2/dL, d being the number of compact
twisted dimensions.

We have three interesting possibilities:

2+1 dim, spatial dimensions compact, ∝ NL

3+1 dim, all dimensions compact, ∝
√
NL

3+1 dim, two spatial dimensions compact, ∝ NL
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Finite-N volume (in-)dependence
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Introduction Lattice calculation Results

x-scaling conjecture

Theory: pure SU(N) gauge theory on a spatial two-torus of
size L with twisted boundary conditions.

Dimensionless scaling variable x = NL
4πb , where b = 1

g2N
is the

inverse ’t Hooft coupling

x-scaling conjecture: physical quantities in the theory depend
only on x and the angle θ̃ given by the parameters of the
twist: θ̃ = 2πk̄

N , with integer k̄ defined as: kk̄ = 1 (mod N),
where k is the magnetic flux.

Can be thought of as a strong form of TEK-like volume
independence also valid at finite N.
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Introduction Lattice calculation Results

x-scaling conjecture cntd.

Garcia, Gonzalez-Arroyo, Okawa 2013, 14: conjecture satisfied
in PT for the non-zero electric flux sector (∝ k-string
tensions), also strong lattice confirmation.

Can avoid tachyonic instabilities by suitably scaling k, k̄ ∝ N,
analogous to the Twisted Eguchi-Kawai model.

What about the zero electric flux sector
(∝ glueballs/torelons)?

Here 1/N2 corrections can arise in higher orders of PT.

Also known to be approximate at large x (large volume), but
1/N2 coefficients “remarkably small” (Teper et al. 2015)
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Introduction Lattice calculation Results

Numerical calculation

Goal: numerically verify the conjecture, particularly in the
glueball sector.

For numerical investigation: lattice model with Wilson action:

S = Nb
∑

n∈Z3
(L,L,T )

∑
µ 6=ν

(
N − z∗µν(n)U�

µν(n)
)
,

where zµν(n) = exp
(
iεµν

2πk
N

)
at corner plaquettes in each

(1,2)-plane, and 1 everywhere else.

Numerical agenda:
1 Take theories with N = 5, 7, 11, 17 and approx. matching NL.

2 Take all values of k and wide range of couplings, ranging from
small-volume perturbative regime (small x), to large-volume
non-perturbative one (large x).

3 Calculate lightest scalar [and tensor] glueball masses, as well as
electric flux energies.
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Introduction Lattice calculation Results

Numerical calculation cntd.

Electric flux energies: find energies from plateaux of the
Polyakov loop correlators with winding number k̄.

Glueballs: variational analysis, use basis of large rectangular
Wilson loops and moduli of multi-winding Polyakov loops
|TrPn|2, with different levels of smearing.

Construct Cij(t) =
∑

t′〈Oi (t
′+t)Oj(t

′)〉 − 〈Oi (t
′+t)〉〈Oj(t

′)〉
and do GEVP to find improved plateaux.

Look out for finite-temperature effects!
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Introduction Lattice calculation Results

Results, glueball masses, scan in x
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Results, glueball masses, x = 2.785 (b ≈ 2)
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Results, electric flux energy, x = 2.785 (b ≈ 2)
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Results, overlap of operators, x = 0.199 (b ≈ 28)
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Summary & outlook

x-scaling conjecture: in a 2+1 dimensional Yang-Mills theory
with twisted boundary conditions physics is governed by
product NLλ

x-scaling with strong confirmation in the non-zero electric flux
sector

Strong hints that the same applies to zero-electric flux
(glueball) sector, at least to a good approximation.

Outlook: continue runs, particularly to reach large-volume
regime.

In principle, straightforward to generalize to 3 + 1, modulo
technical details.
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