Status of Double Chooz experiment

Emmanuel Chauveau
on behalf of the Double Chooz collaboration

Research Center for Neutrino Science
Tohoku University, Sendai, Japan

EP HEP 2015, Vienna
July 23, 2015
Measurement of θ_{13} with Double Chooz

- non vanishing last mixing angle θ_{13} (Nov. 2011) → input for next generation experiments: mass hierarchy, CP violation, etc.
- direct measurement of θ_{13} through disappearance $\bar{\nu}_e$ from nuclear reactors:
 \[
P_{\bar{\nu}_e \to \bar{\nu}_e} \approx 1 - \sin^2(2\theta_{13}) \sin^2 \left(\frac{\Delta m^2_{31} L}{4E} \right) + O(10^{-3})
\]
- 2 identical detectors for high precision (detection+flux systematics reduction)
Double Chooz detectors layout

INVERSE BETA DECAY on proton (threshold > 1.8 MeV)

\[\bar{\nu}_e + p^+ \rightarrow e^+ + n \]

prompt signal: scintillation + e\(^+\) annihilation
E\(_{\text{prompt}} \approx E(\nu_e) - 0.8 \text{ MeV} \]

delayed signal: γ ray(s) from neutron capture
n-Gd
E\(_{\text{delayed}} \approx 8.0 \text{ MeV} \) \(\Delta T \approx 30 \mu s \)
or n-H
E\(_{\text{delayed}} \approx 2.2 \text{ MeV} \) \(\Delta T \approx 200 \mu s \)

Neutrino target: liquid scintillator PXE + Gd

Gamma catcher: liquid scintillator PXE (no Gd)

Buffer volume: transparent mineral oil
with 390 x 10'' PMTs assembly

Inner Veto: liquid scintillator (LAB)
with 78 x PMTs 8''

Outer Veto: plastic scintillator strips
Background

COSMOGENETIC
long lifetime β-n emitter
(mainly 9Li)

CORRELATED
fast neutrons from μ spallation,
stopping-μ (acceptance hole)

ACCIDENTALS
natural radioactivity: 40K, 208Tl
\rightarrow dominant in H-analysis

Visible Energy (MeV)

BACKGROUND SPECTRUM
(ARBITRARY UNIT)

neutrino signal
cosmogenetic
correlated
accidentals

Visible Energy (MeV)
new analysis with opened selection (more signal) + new vetos (less background)

- excellent spectral distortion in $0.5 - 4$ MeV region constraining θ_{13} fit

$$\sin^2(2\theta_{13}) = 0.090^{+0.032}_{-0.029}$$

- previous Gd results: 0.109 ± 0.039

- unexpected E/L structure > 4 MeV (only published experimental observation)

Alternative channel to Gd (main) with independant data sample

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt Energy</td>
<td>0.7 – 12.2 MeV</td>
<td>1.0 – 20 MeV</td>
</tr>
<tr>
<td>Delayed Energy</td>
<td>1.5 – 3.0 MeV</td>
<td>1.3 – 3 MeV</td>
</tr>
<tr>
<td>Δt</td>
<td>10 – 600 μs</td>
<td>0.5 – 800 μs</td>
</tr>
<tr>
<td>ΔR</td>
<td>< 0.9 m</td>
<td>< 1.2 m</td>
</tr>
<tr>
<td>isolation window</td>
<td>[-600, +1000] μs</td>
<td>[-800, +900] μs</td>
</tr>
</tbody>
</table>

- muon veto: $\Delta t_{\text{last}} - \mu > 1.25$ ms
- OV veto: no OV hit coincident with prompt
- ^9Li veto: likelihood method trained with ^{12}B
- “FV” veto: reject stopping muons
- IV veto: reject fast-neutrons and accidentals
- ANN: reject accidentals *NEW*
- MPS veto: reject fast-neutrons *NEW*

H-III analysis benefits previous improvement from last Gd analysis (2014)
Neural Network for accidental background rejection (ANN)

- **multiple variable analysis** instead of cut-based approach
- input: delayed energy, time and space correlation
- maximise signal/background for unprecedented accidental reduction
Neural Network for accidental background rejection (ANN)

- **multiple variable analysis** instead of cut-based approach
- input: delayed energy, time and space correlation
- maximise signal/background for unprecedented accidental reduction

\[\text{H-II:} \quad 73.45 \pm 0.16 \ \text{events/day} \]
\[\text{H-III:} \quad 4.334 \pm 0.011 \ \text{events/day} \quad (17x \ less) \]
Multiplicity Pulse Shape veto (MPS)

- μ producing multiple fast-neutrons in rocks
- proton recoil mimics prompt signal
- additional pulses (low energy p-recoil) recorded within 256 ns \rightarrow exploit power of FADC

IBD event

fast neutron event

MPS veto rejects $\sim 25\%$ of fast-neutron background
H-III neutrino candidates, background and systematics

- Expected ν rate
- Measured candidates rate

DC-III (n-H) Preliminary
- Average Rate: 68.9 ± 0.4 day$^{-1}$
- MC Average Rate: 64.9 ± 0.0 day$^{-1}$

Background

<table>
<thead>
<tr>
<th>Source</th>
<th>H-II (d$^{-1}$)</th>
<th>H-III (d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidental</td>
<td>73.45 ± 0.16</td>
<td>4.33 ± 0.01</td>
</tr>
<tr>
<td>Cosmogenic 9Li/8He</td>
<td>2.8 ± 1.2</td>
<td>$0.95^{+0.57}_{-0.33}$</td>
</tr>
<tr>
<td>Fast-n + Stopping muons</td>
<td>3.17 ± 0.54</td>
<td>1.55 ± 0.15</td>
</tr>
<tr>
<td>Total</td>
<td>79.4 ± 1.3</td>
<td>$6.83^{+0.59}_{-0.36}$</td>
</tr>
</tbody>
</table>

Source Uncertainty

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor flux</td>
<td>1.73%</td>
</tr>
<tr>
<td>Statistics</td>
<td>0.60%</td>
</tr>
<tr>
<td>Detection efficiency</td>
<td>1.00%</td>
</tr>
<tr>
<td>Accidental BG</td>
<td>0.02%</td>
</tr>
<tr>
<td>9Li + 8He BG</td>
<td>$+0.86% / -0.50%$</td>
</tr>
<tr>
<td>Fast-n and stop-μ BG</td>
<td>0.23%</td>
</tr>
<tr>
<td>Total</td>
<td>$+2.28% / -2.18%$</td>
</tr>
</tbody>
</table>
H-III θ_{13} MEASUREMENT
H-III rate + shape result

\[
\sin^2(2\theta_{13}) = 0.124^{+0.030}_{-0.039}
\]

Gd-III: 0.090^{+0.032}_{-0.029}

H-II: 0.097 \pm 0.048

deviation in 4–6 MeV similar with the Gd-III one reported

(result for cross-check only)
H-III Reactor Rate Modulation (RRM) result

- independent measurement of θ_{13} (slope)
- constraint with background model to increase precision

\[
\sin^2(2\theta_{13}) = 0.098^{+0.038}_{-0.039} \quad \text{background} = 7.29 \pm 0.49 \text{ /day}
\]

Livetime: 462.72 days

1σ error defined as $\Delta \chi^2 = 1.0$
H-III Reactor Rate Modulation (RRM) result

- independent measurement of θ_{13} (slope)
- constraint with background model to increase precision

$$\sin^2(2\theta_{13}) = 0.098 \pm 0.038$$

background = 7.29 ± 0.49 /day

- combination Gd-III + H-III: $\sin^2(2\theta_{13}) = 0.090 \pm 0.033$
- Gd-III only: $\sin^2(2\theta_{13}) = 0.090 \pm 0.034$
Conclusion and outlook

New analysis with n-H channel (far detector only)

- validation and cross-check of Gd-III measurement (2014)
- RRM analysis: $\sin^2(2\theta_{13}) = 0.098 \pm 0.038$
- combined fit Gd+H RRM: $\sin^2(2\theta_{13}) = 0.090 \pm 0.033$
- verification of E/L distortion with independent data set and detection volume

Instrumentation

- novel powerful techniques for low background IBD selection
- accidentals reduced by $> 10\times$ with negligible impact on syst. and stat. errors
 - Double Chooz demonstrates capability of precision measurement of reactor neutrinos with Hydrogen and narrow overburden (Gd still better)
Conclusion and outlook

- Near detector operating since January 2015
- working on two detector analysis to challenge 10 % 1σ-error within ~ 3 years
- more prospects with ND data: one reactor spectrum, cosmogenic isotope, etc.
BACKUP SLIDES
4–6 MeV distortion

- Consistent feature in Gd and H channels (different volume and background)
- Excess in 4–6 MeV region correlated with reactor power
- Ongoing research and discussion in the community
Energy reconstruction

\[E_{vis} = N_{pe} \times f_u(\rho, z) \times f_{PE/MeV} \times f_{data}^{data}(E_{vis}, t) \times f_{n\ell}^{MC} \]

- \(N_{pe} \): Charge to PE
- \(f_u(\rho, z) \): non-uniformity correction
- \(f_{n\ell}^{MC} \): non linearity correction
Energy reconstruction

\[E_{\text{vis}} = N_{pe} \times f_u(\rho, z) \times f_{PE/\text{MeV}} \times f_s^{\text{data}}(E_{\text{vis}}, t) \times f_{n\ell}^{\text{MC}} \]

- \(f_{PE/\text{MeV}} \): absolute PE to MeV scale using \(^{252}\text{Cf} \) @ center
- \(f_s^{\text{data}}(E_{\text{vis}}, t) \): time stability correction

![Graphs showing energy reconstruction results](chart.png)
Correlated background

Double Chooz Preliminary DC-III (n-H)

- Data driven measurement
- Exponential shape in H channel (flat for Gd)
- Includes a negligible proportion of stopping muons
H-III OFF-OFF data

- Expected rate: $7.05^{+0.6}_{-0.4}$ events/day (residual neutrino $= 0.33 \pm 0.10$)
- Measured rate: 8.8 ± 1.1 events/day
 - Demonstration of the rejection of power of our selection
 - Validation of our background model

<table>
<thead>
<tr>
<th></th>
<th>all events</th>
<th>≥ 12 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>before vetos</td>
<td>10185</td>
<td>23</td>
</tr>
<tr>
<td>after vetos</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>rejection</td>
<td>160x</td>
<td>23x</td>
</tr>
</tbody>
</table>
Reactor flux prediction

Thermal power, P_{th}, from reactor operation data

Simulated fission fractions, α_k, and mean energy, $\langle E_f \rangle$

Semi-empirical mean cross section per fission, $\langle \sigma_f \rangle$

(following Huber/Mention et al., 2011)

\[
N_i = \frac{\epsilon N_p}{4\pi} \sum_R \frac{1}{L_R^2 \langle E_f \rangle_R} \left(\frac{\langle \sigma_f \rangle_R}{\sum_k \alpha_k^R \langle \sigma_f \rangle_k} \sum_k \alpha_k^R (\sigma_f)_{k,i} \right)
\]

Bugey4 “anchor”:

\[
\langle \sigma_f \rangle_R = \langle \sigma_f \rangle_{\text{Bugey}} + \sum_k (\alpha_k - \alpha_k^{\text{Bugey}}) (\sigma_f)_{k}
\]

$i =$ energy bin index, $R =$ {Reactor 1, Reactor 2}, $k =$ \{\(^{235}\text{U}, \ ^{236}\text{U}, \ ^{239}\text{Pu}, \ ^{241}\text{Pu}\}\}

$\epsilon =$ detection efficiency, $N_p =$ number of protons in fiducial volume, $L_R =$ distance between R^{th} reactor and detector
Early uncalibrated ND data demonstrating:

- feasibility of IBD measurement and quality/similarities of the two detectors
- illustration of energy reconstruction (from ND to FD)
- preliminary study of singles in ND indicates a similar rate as in FD
 → goals in term of radiopurity and shielding are achieved