Status of Double Chooz experiment

Emmanuel Chauveau on behalf of the Double Chooz collaboration

Research Center for Neutrino Science Tohoku University, Sendai, Japan

> EP HEP 2015, Vienna July 23, 2015

Measurement of θ_{13} with Double Chooz

- non vanishing last mixing angle θ_{13} (Nov. 2011) \rightarrow input for next generation experiments: mass hierarchy, CP violation, etc.
- direct measurement of θ_{13} through disappearance $\bar{\nu}_e$ from nuclear reactors:

$$P_{\overline{\nu}_e \rightarrow \overline{\nu}_e} \approx 1 - \sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4 E}\right) + O(10^{-3})$$

■ 2 identical detectors for high precision (detection+flux systematics reduction)

INVERSE BETA DECAY on proton (threshold > 1.8 MeV)

$$\bar{\nu}_e + p^+ \longrightarrow e^+ + r$$

prompt signal: scintillation + e^+ annihilation Eprompt $\approx E(v_e) - 0.8 \text{ MeV}$

Neutrino target: liquid scintillator PXE + Gd

Gamma catcher: liquid scintillator PXE (no Gd)

Buffer volume: transparent mineral oil with 390 x 10" PMTs assembly

Inner Veto: liquid scintillator (LAB) with 78 x PMTs 8"

Outer Veto: plastic scintillator strips

Background

fast neutrons from μ spallation, stopping- μ (acceptance hole)

 $\begin{array}{l} \textbf{ACCIDENTALS} \\ \textbf{natural radioactivity:} \ {}^{40}\textbf{K}, \ {}^{208}\textbf{TI} \\ \rightarrow \textbf{dominant in H-analysis} \end{array}$

Highlight of last Gd analysis (2014)

- new analysis with opened selection (more signal) + new vetos (less background)
- \blacksquare excellent spectral distortion in 0.5 4 MeV region constraining θ_{13} fit

 $\sin^2(2\theta_{13}) = 0.090 \stackrel{+0.032}{_{-0.029}}$ previous Gd results: 0.109 ± 0.039

unexpected E/L structure > 4 MeV (only published experimental observation)

New H analysis "H-III" (2015)

Alternative channel to Gd (main) with independant data sample

	H-II (2013)	H-III (2015)
Prompt Energy	0.7 – 12.2 MeV	1.0 – 20 MeV
Delayed Energy	1.5 - 3.0 MeV	1.3 – 3 MeV
Δt	10 - 600 μs	$0.5 - 800 \ \mu s$
ΔR	< 0.9 m	< 1.2 m
isolation window	[-600, +1000] µs	[-800, +900] µs

- **muon veto:** $\Delta t_{last-\mu} > 1.25 \text{ ms}$
- OV veto: no OV hit coincident with prompt
- ⁹Li veto: likelihood method trained with ¹²B
- "FV" veto: reject stopping muons
- IV veto: reject fast-neutrons and accidentals
- ANN: reject accidentals *NEW*
- MPS veto: reject fast-neutrons *NEW*

H-III analysis benefits previous improvement from last Gd analysis (2014)

Neural Network for accidental background rejection (ANN)

- multiple variable analysis instead of cut-based approach
- input: delayed energy, time and space correlation
- maximise signal/background for unprecedented accidental reduction

Neural Network for accidental background rejection (ANN)

- multiple variable analysis instead of cut-based approach
- input: delayed energy, time and space correlation
- maximise signal/background for unprecedented accidental reduction

H-II: 73.45 \pm 0.16 events/day H-III: 4.334 \pm 0.011 events/day (17x less)

Multiplicity Pulse Shape veto (MPS)

- proton recoil mimics prompt signal
- additionnal pulses (low energy p-recoil) recorded within 256 ns → exploit power of FADC

MPS veto rejects \sim 25 % of fast-neutron background

H-III neutrino candidates, background and systematics

H-III θ_{13} MEASUREMENT

H-III rate + shape result

$$\sin^2(2\theta_{13}) = 0.124 \begin{array}{c} +0.030 \\ -0.039 \end{array}$$

Gd-III: $0.090 \stackrel{+0.032}{_{-0.029}}$ H-II: 0.097 ± 0.048

deviation in 4-6 MeV similair with the Gd-III one reported

(result for cross-check only)

H-III Reactor Rate Modulation (RRM) result

• independent measurement of θ_{13} (slope)

constraint with background model to increase precision

 $\sin^2(2 heta_{13}) = 0.098 \ ^{+0.038}_{-0.039}$

background = 7.29 \pm 0.49 /day

H-III Reactor Rate Modulation (RRM) result

- independent measurement of θ_{13} (slope)
- \blacksquare constraint with background model to increase precision

 $\sin^2(2 heta_{13}) = 0.098 \ ^{+0.038}_{-0.039}$ background = 7.29 \pm 0.49 /day

■ combination Gd-III + H-III: $\sin^2(2\theta_{13}) = 0.090 \pm 0.033$ Gd-III only: $\sin^2(2\theta_{13}) = 0.090 \stackrel{+0.034}{_{-0.035}}$

New analysis with n-H channel (far detector only)

- validation and cross-check of Gd-III measurement (2014)
- RRM analysis: $\sin^2(2\theta_{13}) = 0.098 \stackrel{+0.038}{_{-0.039}}$
- combined fit Gd+H RRM: $\sin^2(2\theta_{13}) = 0.090 \pm 0.033$
- verification of E/L distortion with independent data set and detection volume

Instrumentation

- novel powerful techniques for low background IBD selection
- accidentals reduced by > 10x with negligible impact on syst. and stat. errors
 - \rightarrow Double Chooz demonstrates capability of precision measurement of reactor neutrinos with Hydrogen and narrow overburden (Gd still better)

Conclusion and outlook

- Near detector operating since January 2015
- working on two detector analysis to challenge 10 % 1σ -error within \sim 3 years
- more prospects with ND data: one reactor spectrum, cosmogenetic isotope, etc.

THANKS FOR YOUR ATTENTION

BACKUP SLIDES

4-6 MeV distortion

- consistent feature in Gd and H channels (different volume and background)
- excess in 4–6 MeV region correlated with reactor power
- ongoing research and discussion in the community

 $E_{vis} = N_{pe} \times f_u(\rho, z) \times f_{PE/MeV} \times f_s^{data}(E_{vis}, t) \times f_{nl}^{MC}$

 $E_{vis} = N_{pe} \times f_u(\rho, z) \times f_{PE/MeV} \times f_s^{data}(E_{vis}, t) \times f_{nl}^{MC}$

Double Chooz Preliminary DC-III (n-H)

- data driven measurement
- exponentional shape in H channel (flat for Gd)
- includes a negligible proportion of stopping muons

H-III OFF-OFF data

	all events	>12 MeV
before vetos	10185	23
after vetos	63	1
rejection	160x	23x

expected rate: $7.05^{+0.6}_{-0.4}$ events/day (residual neutrino = 0.33 ± 0.10)

- measured rate: 8.8 ± 1.1 events/day
 - \rightarrow demonstration of the rejection of power of our selection
 - \rightarrow validation of our background model

Reactor flux prediction

Thermal power, *P*_{th}, from reactor operation data

Simulated fission fractions, α_k , and mean energy, $\langle E_f \rangle$

Semi-empirical mean cross section per fission, $\langle \sigma_f \rangle$ (following Huber/Mention et al., 2011)

$$N_{i} = \frac{\epsilon N_{p}}{4\pi} \sum_{R} \frac{1}{L_{R}^{2}} \frac{\mathbf{P}_{\text{th}}^{R}}{\langle \mathbf{E}_{\mathbf{f}} \rangle_{R}} \left(\frac{\langle \sigma_{\mathbf{f}} \rangle_{R}}{\sum_{k} \alpha_{k}^{R} \langle \sigma_{\mathbf{f}} \rangle_{k}} \sum_{k} \alpha_{k}^{R} \langle \sigma_{\mathbf{f}} \rangle_{k,i} \right)$$

Bugey4 "anchor": $\langle \sigma_f \rangle_R = \langle \sigma_f \rangle_{Bugey} + \sum_k (\alpha_k - \alpha_k^{Bugey}) \langle \sigma_f \rangle_k$

i = energy bin index, R = {Reactor 1, Reactor 2}, k = { 235 U, 239 U, 239 P} ϵ = detection efficiency, N_o = number of protons in fiducial volume, L_R = distance between R^{th} reactor and detector

First ND data

Spectrum of spallation neutron captures following crossing muons

Early uncalibrated ND data demonstrating:

- feasibility of IBD measurement and quality/similarities of the two detectors
- illustration of energy reconstruction (from ND to FD)
- preliminary study of singles in ND indicates a similar rate as in FD → goals in term of radiopurity and shielding are achieved