HEAVY NEUTRINOS IN PARTICLE PHYSICS AND COSMOLOGY

Marco Drewes
TU München

2013 review arXiv:1303.6912 [hep-ph] update arXiv:1502.06891 [hep-ph]

23. 7. 2015 EPS-HEP meeting Vienna, Austria

Three Generations of Matter (Fermions) spin ½

spin 0

Neutrino masses: Seesaw mechanism

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial \!\!\!/ \nu_R - \bar{L}_L F \nu_R \tilde{H} - \bar{\nu}_R F^\dagger L \tilde{H}^\dagger - \frac{1}{2} (\bar{\nu^c}_R M_M \nu_R + \bar{\nu}_R M_M^\dagger \nu_R^c)$$

Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanagida 1980

$$\Rightarrow \frac{1}{2} (\overline{\nu_L} \, \overline{\nu_R^c}) \left(\begin{array}{cc} 0 & m_D \\ m_D^T & M_M \end{array} \right) \left(\begin{array}{c} \nu_L^c \\ \nu_R \end{array} \right)$$

two sets of Majorana mass states with mixing $\theta = m_D M_M^{-1} = vFM_M^{-1}$

- three light "active" neutrinos $\nu \simeq U_{\nu}(\nu_{L} + \theta \nu_{P}^{c})$
 - mostly "active" SU(2) doublet
 - light masses $m_{\nu} \simeq \theta M_{M} \theta^{T} = v^{2} F M_{M}^{-1} F^{T}$
- three heavy "sterile" neutrinos $N \simeq \nu_R + \theta^T \nu_r^c$
 - mostly "sterile" singlets
 - heavy masses $M_N \simeq M_M$
- Majorana masses M_M introduce new mass scale(s)
- new heavy states only interact via small mixing $\theta \ll 1$

Where to see the N_l

Indirect searches

- neutrino oscillation data
- LFV in rare lepton decays
- violation of lepton universality,
- (apparent) violation of CKM unitarity
- neutrinoless double β -decay
- EW precision data

Direct searches

LNV and LFV in gauge boson or meson decays

- displaced vertices
- peak searches, missing 4-momentum
- Cosmology: BBN and N_{eff}

ν -oscillation data and the seesaw scale

HEAVY NEUTRINOS IN PARTICLE PHYSICS AND COSMOLOGY

from Hernandez/Kevic/Lopez-Pavon 1406,2961

Bounds from Colliders

plot from MaD/Garbrecht 1502.00477

Combining direct and indirect constraints

What can RH neutrinos do for you?

Neutrino masses and...

- M > 100 MeV: Leptogenesis
 CP-violating interactions of RH neutrinos can generate a matter-antimatter asymmetry in the early universe.
- M ~ keV: sterile neutrino Dark Matter
 RH neutrinos with tiny mixing θ are long lived massive particles and obvious DM candidates.
- M ≤ eV: oscillation anomalies and Dark Radiation
 Light sterile neutrinos could explain oscillation anomalies (LSND, Galllium, reactor) and contribute to N_{eff} in the early univsere.

- GUT seesaw
 naturally fits into GUTs
 - naturally gives neutrino masses
 - naturally does leptogenesis

electroweak or TeV seesaw

- common origin with EW scale?
- gives neutrinos masses
- allows for leptogenesis
- accessible to LHC

GeV seesaw

- gives neutrino masses
- does leptogenesis
- accessible to LHC, BELLE, SHiP
- part of minimal ν MSM

keV seesaw

viable DM candidate

eV seesaw

- LSND, gallium, reactor anomaly
- "Dark Radiation" N_{eff}

- not observable
- adds to hierarchy problem
- requires some "tuning" or an approximate L-conservation
- not "natural"
- requires some "tuning" or an approximate *L*-conservation
- not "natural"
- origin of this scale?
- cannot give neutrino masses
 & be DM at the same time
- origin of this scale & mixing?
- cannot explain neutrino masse anomalies at the same time
- origin of this scale & mixing?

Low scale leptogenesis

- baryon asymmetry can be produced in the early universe
 - during N_I decay Fukugita/Yanagida 1986, Pilaftsis 2004

Introduction

- during N_I production Akhmedov/Rubakov/Smirnov 1998, Asaka/Shaposhnikov 2005
- N_I can be found at LHC, BELLE II or SHiP plot: Canetti/MaD/Garbrecht 1404.7114

- relevant CP-violation can be observable
 - can work with PMNS-phases alone 1208.4607
 - sterile sector CP-violation may also be observable 1403.2555

keV Masses: Sterile Neutrino Dark Matter?

• Where is the decay line? Very active discussion of 3.5 keV excess...

- How were they produced?
- Are they consistent with structure formation?

Upcoming White Paper:

keV Masses: Sterile Neutrino Dark Matter?

- Where is the decay line? Very active discussion of 3.5 keV excess...
 - radiative decay $N \rightarrow \nu_L \gamma$
 - Search for X-ray line!

- How were they produced?
- Are they consistent with structure formation?

Upcoming White Paper:

keV Masses: Sterile Neutrino Dark Matter?

- Where is the decay line? Very active discussion of 3.5 keV excess...
 - radiative decay $N \rightarrow \nu_L \gamma$
 - Search for X-ray line!

- How were they produced?
- Are they consistent with structure formation?
 - DM is absolutely essential to form structures in the universe
 - DM is "cold", i.e. $\langle \mathbf{k} \rangle < M$ at freezeout

Upcoming White Paper:

fu.cea.fr/en/Phocea/Vie des labos/Ast/ast visu.php?id ast=3446

astro/cosmology status early 2014 plot from 1402.4119, see also 1402.2301

Introduction

Now: very active discussion 1405.7943,1408.1699,1408.3531,1408.4388 and many more

astro/cosmology status early 2014 plot from 1402.4119, see also 1402.2301

Introduction

Now: very active discussion 1405.7943,1408.1699,1408.3531,1408.4388 and many more **Potential of KATRIN** 1409.0920, see also 1404.5955

What's the most promising experiment? ... of course it depends on the mass scale...

Some selected comments:

- neutrinoless double β -decay
 - very sensitive, clear BSM signal
 - but can be hidden if approx. B-L conserving scenarios
- lepton flavour violation
 - may be observable in approx. B-L conserving scenario
- lepton universality
 - may be observable in approx. B-L conserving scenario
- direct searches

• EW/TeV scale: LHC, FCC-ee

GeV scale: SHiP, LHCb, BELLE II

Also important: absolute mass scale, hierarchy, Dirac-phase

Future collider searches

What can they do for you?

Plot from arXiv:1504.04855 [hep-ph]

Summary

- ν-oscillations are the only BSM signal seen in the lab definitely require new BSM degrees of freedom!
- the new particles are RH neutrinos, they may be related to cosmological puzzles (Dark Matter, baryogenesis, Dark Radiation)
- if new particles are below the electroweak scale, they can be found experimentally ⇒ experimental search for exciting New Physics!
- even if they are heavier, indirect probes involve
 - neutrino oscillation experiments
 - neutrinoless double β -decay
 - lepton flavour violation
 - lepton universality violation
 - unitarity of the observed CKM matrix

We are looking forward to exciting new data...

The ν MSM: heavy neutrinos solve all problems!

Boyarsky/Ruchayskiy/lakubovskyi/Franse 1402.4119

Canetti/MaD/Frossard/Shaposhnikov 1204.3902, 1208.4607

DM, Baryogenesis and neutrino masses from RH neutrinos!

Where is the New Physics hiding?

The SHiP Experiment

- intensity frontier experiment using CERN SPS beam
- fixed target experiment with strong shield
- technical report arXiv:1504.04956 [physics.ins-det]

The SHiP Experiment

What can they do for you?

Search for Hidden Particles

- neutrino portal
- scalar portal
- vector portal
- axion-like particles
- \bullet ν_{τ} physics
- LFV in τ-decays
- very light neutralino?
- your proposal!

see arXiv:1504.04855 [hep-ph] for details great opportunity at the intensity frontier - also for China