

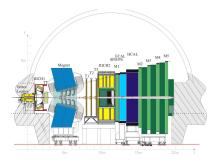
Electroweak Physics at LHCb

EPS 2015, Vienna, Austria

William Barter On behalf of the LHCb collaboration

European Organisation for Nuclear Research (CERN)

23rd July 2015

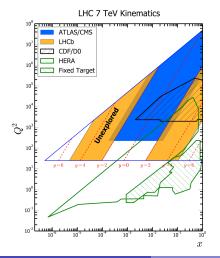

Introduction

- LHCb has an exciting programme studying the physics of electroweak boson production.
 - In different regimes these measurements are sensitive to pQCD, PDFs, and allow precision tests of Standard Model.
 - Also allows backgrounds to be constrained for other processes like top quark production in the forward region (see Roger Barlow's talk on Saturday!)
- This talk will cover:
 - the LHCb detector,
 - ▶ *W* and *Z* production in the forward region,
 - boson + jet production,
- Lots of material not covered today (proton-lead collisions, $Z \rightarrow \tau \tau ...$)!

(日) (同) (日) (日)

The LHCb Detector

- Single arm spectrometer, fully instrumented in forward region (2.0 < η < 4.5). Designed for flavour physics.
- LHCb overlap with GPDs in 2.0 $< \eta <$ 2.5, precision coverage unique for LHCb 2.5 $< \eta <$ 4.5.
 - allows complementary studies in QCD and EW physics to ATLAS and CMS. The region of overlap also allows comparison of results.

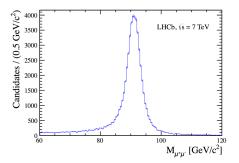


- Excellent vertex resolution (VELO) (0.01-0.05 mm in transverse plane),
- Tracking detectors, ECAL, HCAL, Muon chambers,
- Ring Imaging Cherenkov (RICH) detectors for particle ID,

• Dedicated triggers for EW analyses - e.g. single lepton ($p_T > 10$ GeV).

W & Z production in the forward region

• Main theory uncertainty on benchmark Standard Model Processes comes from uncertainties in parton distribution functions (PDFs).

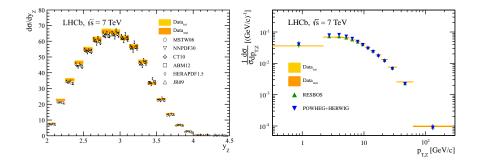


- LHCb is sensitive to previously unexplored region of low x-high Q² phase space.
- Can use measurements at LHCb to constrain PDFs.
- PDF uncertainties reduced in some cross-section ratios - can also probe the standard model.

arXiV:1505.07024

$Z ightarrow \mu \mu$ production in the forward region

- 1 fb⁻¹ data at $\sqrt{s} = 7$ TeV.
- Study $pp \rightarrow Z(\rightarrow \mu\mu)X$.
- Fiducial Acceptance:
 - ▶ p_T(µ) > 20GeV,
 - $2.0 < \eta(\mu) < 4.5$,
 - $60 < M(\mu\mu) < 120$ GeV.
- ~ 99% purity in $\mu\mu$ final state.
- Efficiencies taken from data using tag and probe methods.
- Dominant uncertainties on cross-section from luminosity (1.7%) and beam energy (1.3%).

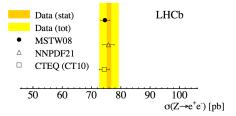

Source	Uncertainty (%)
Statistical	0.39
Trigger efficiency	0.07
Identification efficiency	0.23
Tracking efficiency	0.53
FSR	0.11
Purity	0.22
GEC efficiency	0.26
Systematic	0.68
Beam energy	1.25
Luminosity	1.72
Total	2.27

W. Barter (CERN)

23rd July 2015 5 / 21

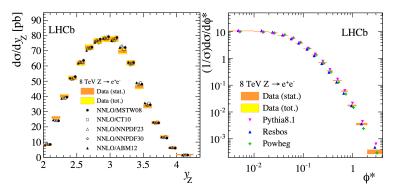
arXiV:1505.07024

$Z \to \mu \mu$ production in the forward region



- Very good agreement with NNLO predictions in the rapidity distribution very sensitive to PDF effects.
- Very good agreement with different NLO predictions in the transverse momentum distribution sensitive to higher orders in pQCD.

$Z \rightarrow ee$ production in the forward region


JHEP05 (2015) 109, JHEP02 (2013) 106

- 1 fb⁻¹ at $\sqrt{s} = 7$ TeV and 2 fb⁻¹ at $\sqrt{s} = 8$ TeV
- Study $pp \rightarrow Z(\rightarrow ee)X$.
- Fiducial Acceptance:
 - ▶ p_T(e) > 20GeV,
 - ▶ 2.0 < η(e) < 4.5,</p>
 - ▶ 60 < M(ee) < 120 GeV.</p>
- > 90% purity in *ee* final state.
 - Overall cross-section measurement in good agreement with measured cross-sections in muon final state.

(日) (同) (三) (三)

$Z \rightarrow ee$ production in the forward region JHEP05 (2015) 109, JHEP02 (2013) 106

- Data show good agreement with theory for both fixed order and ME+PS simulation.
- Agreement seen for multiple PDF sets.
- Agreement seen in both rapidity and ϕ^* distributions.

•
$$\phi^* \equiv \tan\left(\frac{\pi - \Delta \phi}{2}\right) / \cosh\left(\frac{\Delta \eta}{2}\right) \approx \frac{p_{\mathrm{T}}}{M}$$

 $W
ightarrow \mu
u$ production in the forward region

- 1 fb⁻¹ data at $\sqrt{s} = 7$ TeV.
- Fiducial Acceptance:
 - ▶ p_T(µ) > 20GeV,
 - ▶ 2.0 < η(µ) < 4.5.</p>
- Extract signal by fitting the muon transverse momentum distribution.
- Signal purity of about 77%.
 - Largest uncertainty after luminosity and beam due to reconstruction efficiencies ($\sim 1.2\%$). Uncertainty from template shapes is typically 0.3-0.4%.

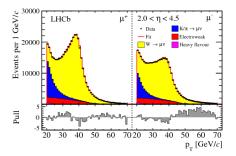
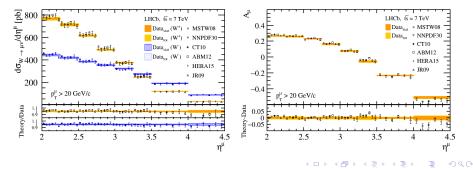
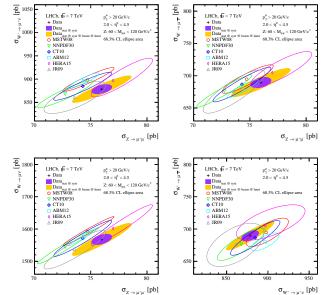



Image: A match a ma

arXiV:1505.07024

$W ightarrow \mu u$ production in the forward region

- Measure cross-section as a function of the lepton η .
- Also measure the Lepton charge asymmetry, $A_{\mu} = \frac{\sigma(W^+) \sigma(W^-)}{\sigma(W^+) + \sigma(W^-)}$
- Many experimental uncertainties cancel in A_{μ} so we can perform a high precision measurement.
- Lepton charge asymmetry is particularly sensitive to PDFs.
- See excellent agreement with NNLO Standard Model predictions.

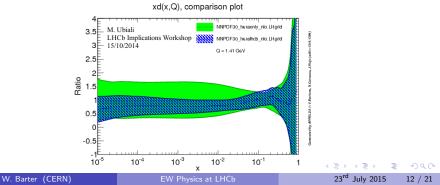


arXiV:1505.07024

W and Z production ratios

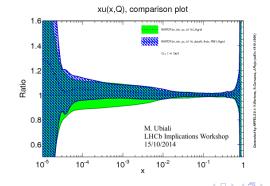
 Ratios of W and Z production cross-sections cancel many experimental and theoretical (scale) uncertainties.

 Sensitivity to PDFs remains in some ratios (W⁺/W⁻).


W. Barter (CERN)

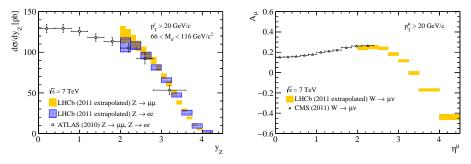
EW Physics at LHCb

arXiV:1505.07024


Impact of LHCb results on PDFs

- Many LHCb run 1 results on electroweak boson production now included in PDF fits.
- Large impact on pre-LHC PDF knowledge.
- Shown here NNPDF down quark PDF and uncertainties (normalised so central value pre-LHC is unity):
 - Green: PDF fit using pre-LHC data
 - Blue: PDF fit using pre-LHC data and LHCb data

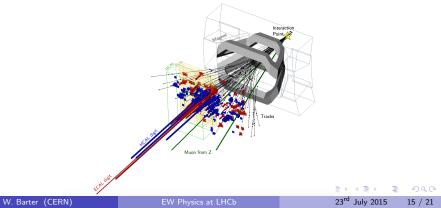
Impact of LHCb results on PDFs


- Even when results from other LHC experiments are included in PDF fits, LHCb still noticeably reduces PDF uncertainties.
- Shown here NNPDF up quark PDF and uncertainties:
 - Green: PDF fit with LHC data (but no LHCb data)
 - Blue: PDF fit with LHC data (including LHCb data)

W. Barter (CERN)

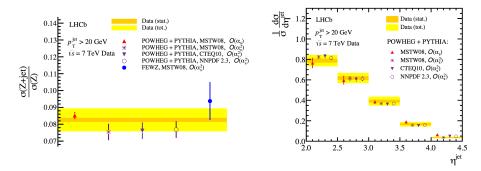
Comparison with ATLAS and CMS

- arXiV:1505.07024
- Extrapolate LHCb results as a function of (pseudo)rapidity, to account for different ATLAS and CMS fiducial acceptances.
- Dominant uncertainty in extrapolation tends to be from scale variation at low η , and PDF uncertainties at high η .


- See very good agreement in region of overlap between ATLAS, CMS and LHCb results.
- LHCb extends the GPD results into a previously unexplored region of phase space which can be used to constrain PDFs.

W. Barter (CERN)

EW Physics at LHCb


W and Z+jet production JHEP01 (2014) 033, arXiv:1505.04051

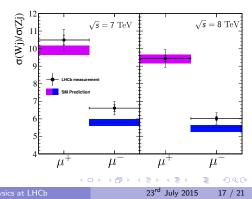
- Vector boson + jet measurements probe pQCD, test PDFs in the forward region, and constrain backgrounds in other key measurements.
- Reconstruct jets using anti- k_{T} algorithm, with r-parameter R = 0.5.
- Jet energy resolution typically $\sim 15\%$ for jets with $p_{\rm T} < 100$ GeV.
- We also have excellent b and c-tagging of jets, and W + b, c jet results - see Roger Barlow's talk on Saturday!

Z+jet production

- Analysis uses 1fb^{-1} of $\sqrt{s} = 7$ TeV data,
- In addition to fiducial acceptance for $Z \rightarrow \mu\mu$, require $p_{T}^{\text{jet}} > 20(10)$ GeV, $2.0 < \eta^{\text{jet}} < 4.5$, $\Delta R(\mu, \text{jet}) > 0.4$.

- Dominant uncertainty from Jet Energy Scale.
- Results in good agreement with theoretical predictions from NLO ME+PS predictions.

W. Barter (CERN)


EW Physics at LHCb

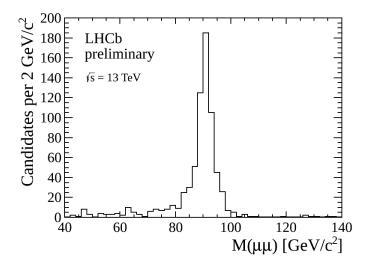
23rd July 2015 16 / 21

JHEP01 (2014) 033

Ratio of W+jet and Z+jet production cross-sections

- Analysis uses both 7 and 8 TeV data collected at LHCb.
- In addition to standard W and Z fiducial acceptance, require jets to have: ρ_T^{jet} > 20 GeV, 2.2 < η^{jet} < 4.2, ΔR(μ, jet) > 0.5.
- Also make additional requirement $p_{T}(\mu + jet) > 20$ GeV in W+jet events.
- Extract signal purity by fitting isolation of muons produced by boson decay - dominant uncertainty from templates used.
- Very good agreement between LHCb data and theoretical predictions using MCFM and CT10 PDFs.

arXiv:1505.04051


Looking Forward

- More exciting results to come from further analysis of the run-1 data.
- and we have $\sqrt{s} = 13$ TeV data on disc

過 ト イヨト イヨト

Looking Forward

• LHCb is looking forward to the years ahead.

W. Barter (CERN)

EW Physics at LHCb

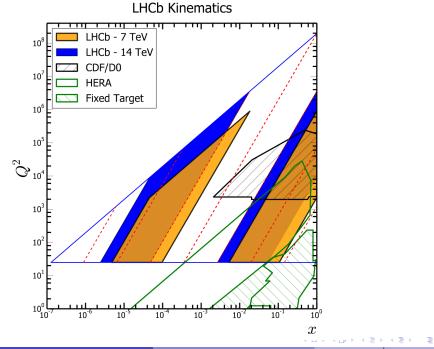
Summary

- LHCb occupies a unique region of phase space at the LHC, allowing complementary measurements to ATLAS and CMS.
- EW measurements at LHCb can be used to:
 - constrain PDFs in previously unexplored regions.
 - test the standard model using ratios of benchmark processes which are very well predicted.
- LHCb results of EW boson production show good agreement with Standard Model predictions and measurements by the GPDs.
- LHCb results of EW boson + jet production show good agreement with the Standard Model, and also provide tests of PDFs.
- LHCb is looking forward to Run 2 measurements.

Material Not Covered Today

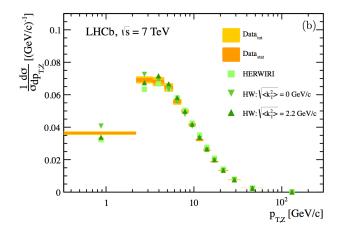
- Z production in proton-lead collisions, JHEP09 (2014) 030
- $Z \rightarrow \tau \tau$, JHEP01 (2013) 111
- Limits on neutral Higgs boson production using ditau final states, JHEP05 (2013) 132
- Z + jet, JHEP01 (2014) 033
- Z + b-jet, JHEP01 (2015) 064
- Z + D meson, JHEP04 (2014) 091

BACKUP SLIDES


W. Barter (CERN)

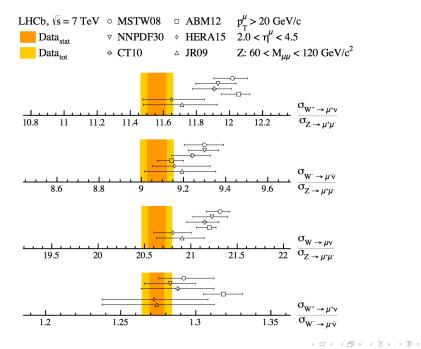
EW Physics at LHCb

23rd July 2015 22 / 21


3

(日) (同) (日) (日) (日)

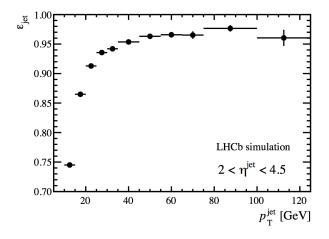
W. Barter (CERN)


23rd July 2015 23 / 21

3

- < ∃ →

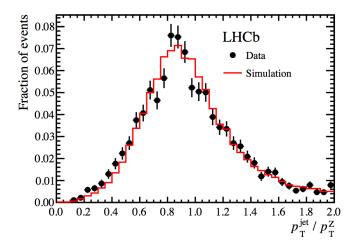
→ ∃ →

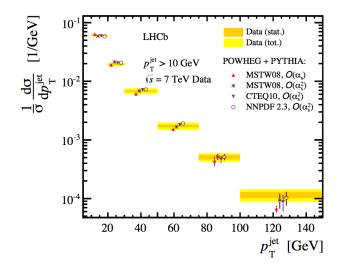


W. Barter (CERN)

EW Physics at LHCb

23rd July 2015 25 / 21

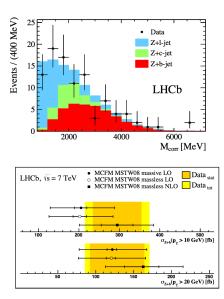

- 3


23rd July 2015 26 / 21

3

-∢≣⇒

∃ →



W. Barter (CERN)

23rd July 2015 28 / 21

æ

< 回 > < 三 > < 三 >

23rd July 2015 29 / 21

3

<ロ> (日) (日) (日) (日) (日)

EW Physics at LHC

W. Barter (CERN)

PDF Sets

- CT10 arXiV:1101.0561
- NNPDF30 arXiV:1410.8849
- MSTW08 arXiV:0901.0002
- ABM12 arXiV:1310.3059
- HERA1.5 arXiV:0911.0884
- JR09 arXiV:0810.4274