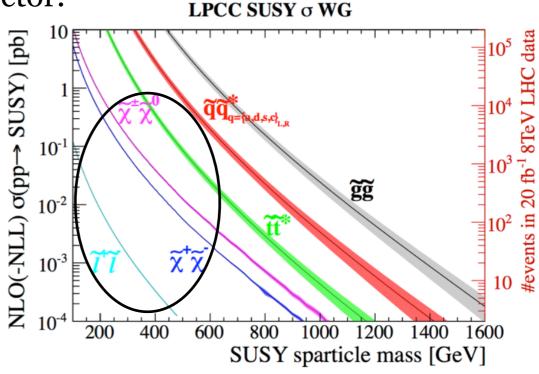


EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS 22 - 29 JULY 2015 - VIENNA, AUSTRIA

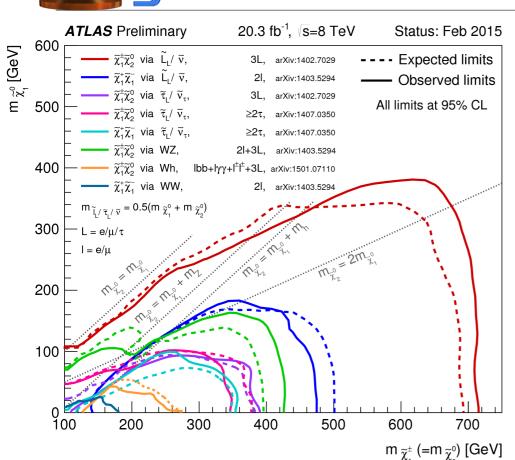
Searches for electroweak SUSY in ATLAS and CMS

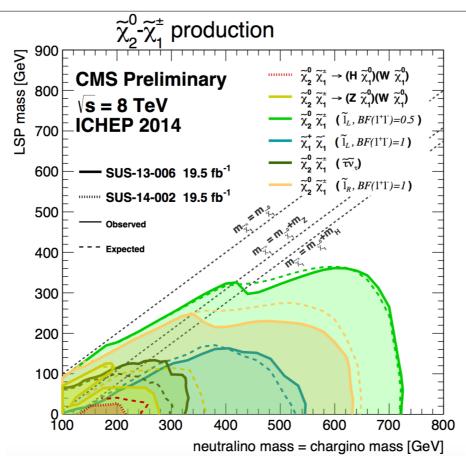

Amandeep Kaur Kalsi for ATLAS-CMS collaboration

SUSY @ LHC

- Discovery of Higgs boson completes the Standard Model (SM).
- BUT still many open questions!!!
 Hierarchy problem , Dark Matter , Gravity, No gauge unification at higher scale.
- SuperSymmetry (SUSY): very appealing extension of SM tries to answer these questions.
- Most of the SUSY searches focus on the colored sector.
- Limits of these models probe masses up
 to ~900 GeV (squarks) and ~1.4 TeV (gluinos).
- SUSY searches in the EWK sector provide a promising approach for new physics.
 - low production cross-section but low hadronic activity.
- Experimental Parameters :

1 -4 leptons, missing transverse energy (E_T^{miss}), 0-2 jets (or b-jets)



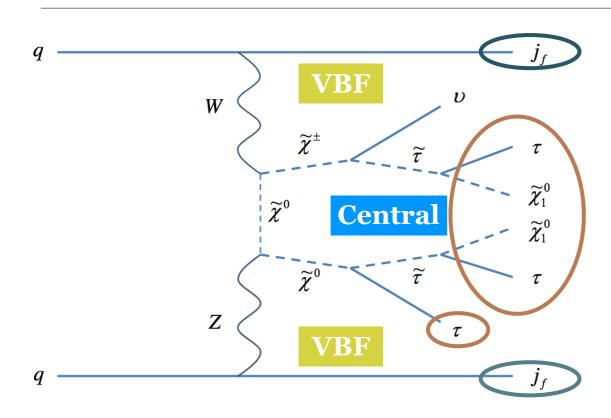

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ SUSYCrossSections

Electroweak SUSY Searches

- Limits on chargino mass up to ~700 GeV.
- Lower Limits for higgsino and compressed mass spectra.

https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/SupersymmetryPublicResults

https://twiki.cern.ch/twiki/bin/view/ CMSPublic/PhysicsResultsSUS


Selected Topics are:

- Searches via Vector Boson Fusion processes (CMS PAS SUS-14-005, ATLAS-CONF-2015-001)
- Searches through Higgs boson (CMS SUS-14-002 PRD, ATLAS paper Eur. Phys. J. C
 (2015) 75:208)

CMS PAS SUS-14-005

- Experimental signature: forward jets, \geq 2 leptons, E_T^{miss} .
- 8 channels are studied: eµjj, µµjj, µ τ_h jj, $\tau_h\tau_h$ jj (opposite sign and same sign leptons).
- Single muon triggers and di- τ_h triggers are used for this study.

- VBF topology provides a complementary probe to look for compressed spectra.
- 2 highly energetic jets with large dijet invariant mass and large pseudorapadity gap is powerful handle against SM backgrounds (reduction in rate by ~10⁻² 10⁻⁴).
- tau-dominated region Br($\tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau}$) ~ 1.

<u>Analysis Strategy</u>

Central Selections:

- 2 isolated leptons with $|\eta|$ < 2.1, $dR(l_1,l_2)$ > 0.3
- $E_T^{miss} > 75 \text{ GeV}$ (> 30 GeV for di τ_h final state)
- no b-jets.

VBF Selections:

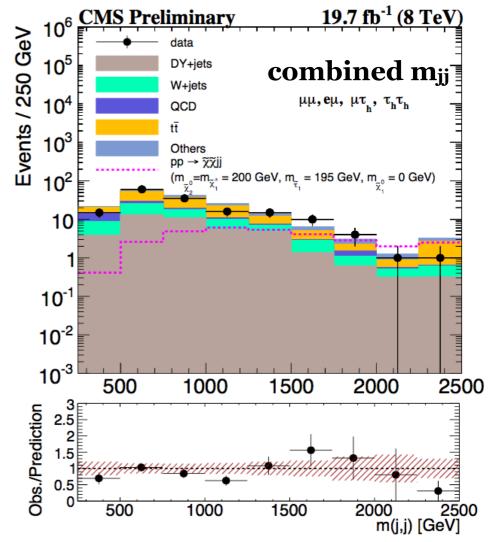
- \geq 2 jets with p_T > 30 GeV "Loose" (or 50 GeV "Tight") with $|\eta| < 5.0$
- $|\Delta \eta(j,j)| > 4.2$, $\eta 1^* \eta 2 < 0$
- $m_{jj} > 250 \text{ GeV}$ (shape based analysis)

Background (BG) Estimation

CMS

- Main BG: ttbar, W/Z+jets, VV, QCD multijets
- BG in Signal Region are estimated from data using :

$$N_{\mathrm{BG}}^{\mathrm{Data}} = N_{\mathrm{BG}}^{\mathrm{MC}}(\mathrm{central}) \cdot SF_{\mathrm{central}}^{\mathrm{CR1}} \cdot \epsilon_{\mathrm{VBF}}^{\mathrm{CR2}}(m_{jj})$$


- Control region (CR) should not bias m_{jj} distributions.
- VBF efficiency is measured in CR after central selections.
- VBF efficiency is independent of E_T^{miss} cut within uncertainty.

Event rate in Signal region (for LS search channels)

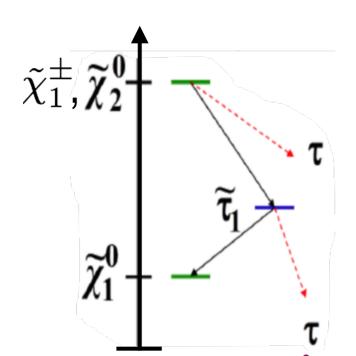
Process	$\mu^{\pm}\mu^{\pm}jj$	$e^{\pm}\mu^{\pm}jj$	$\mu^{\pm} \tau_h^{\pm} jj$	$ au_h^\pm au_h^\pm jj$
DY + jets	< 0.01	$0\pm_0^{1.7}$	0.5 ± 0.2	< 0.01
W + jets	$0.1 \pm 8.2 \times 10^{-4}$	$0\pm_0^{3.0}$	9.3 ± 2.3	0.5 ± 0.1
VV	2.1 ± 0.3	$1.9\pm_{0.2}^{0.4}$	1.1 ± 0.2	$0.1 \pm 6.5 \times 10^{-2}$
$ t\bar{t} $	3.1 ± 0.1	$3.5\pm_{0.9}^{0.7}$	6.7 ± 2.8	$0.1 \pm 1.2 imes 10^{-2}$
Single top	_		_	< 0.1
QCD	_	_	_	7.6 ± 0.9
Higgs	_	_	_	< 0.01
Total	5.4 ± 0.3	$5.4\pm_{0.9}^{3.5}$	17.6 ± 3.8	8.4 ± 0.9
Observed	4	5	14	9

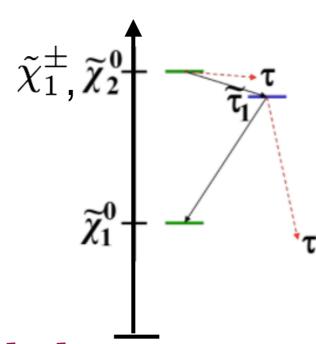
for OS search channels

Process	$\mu^{\pm}\mu^{\mp}jj$	e [±] μ [∓] jj	$\mu^{\pm} \tau_h^{\mp} j j$	$ au_h^{\pm} au_h^{\mp}jj$
DY + jets	4.3 ± 1.7	$3.7\pm^{2.1}_{1.9}$	19.9 ± 2.9	12.3 ± 4.4
W + jets	< 0.01	$4.2\pm_{2.5}^{3.3}$	17.3 ± 3.0	2.0 ± 1.7
VV	2.8 ± 0.5	3.1 ± 0.7	2.9 ± 0.5	0.5 ± 0.2
$ t\bar{t}$	24.0 ± 1.7	$19.0\pm^{2.3}_{2.4}$	11.7 ± 2.8	_
QCD	_	_	_	6.3 ± 1.8
Higgs	1.0 ± 0.1	1.1 ± 0.5	_	1.1 ± 0.1
VBF Z	_	_	_	0.7 ± 0.2
Total	32.2 ± 2.4	$31.1\pm^{4.6}_{4.1}$	51.8 ± 5.1	22.9 ± 5.1
Observed	31	22	41	31

no excess over SM prediction

Amanucep Kaur Kaisi

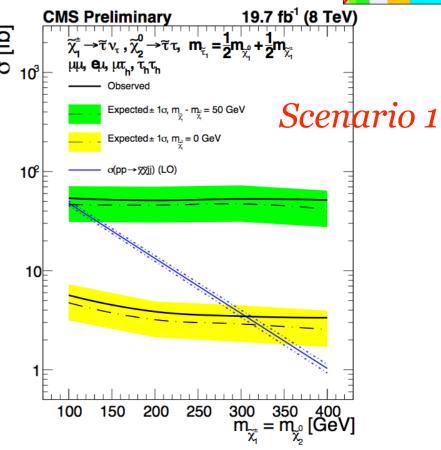

HEP Conference, Vienna

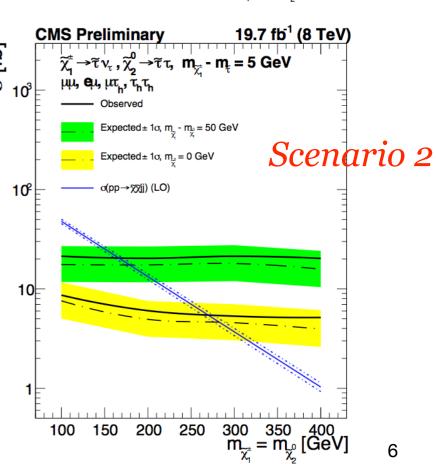

Two scenarios for slepton mass

total 4 scenarios = 2 stau mass X 2 LSP mass scenarios

$$\frac{Scenario\ 1}{m(\tilde{l}) = \frac{1}{2}m(\tilde{\chi}_1^0) + \frac{1}{2}m(\tilde{\chi}_1^{\pm})}$$

$$\frac{Scenario\ 2}{m(\tilde{\chi}_1^{\pm}) - m(\tilde{l})} = 5GeV$$

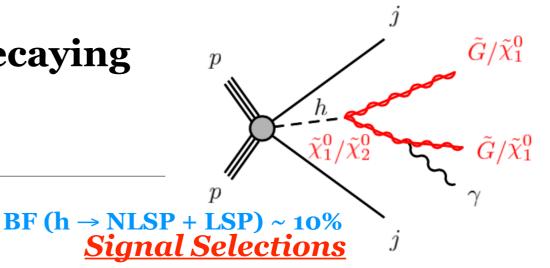


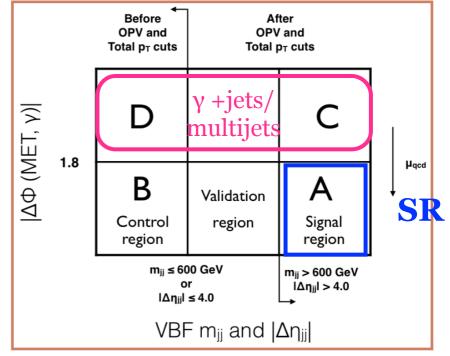

2 scenarios for each slepton mass

compressed mass spectrum $m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^{0}) = 50 GeV$

large mass gap
$$m(\tilde{\chi}_1^0) = 0$$

- Scenario1: combined observed limit of 300 GeV (expected at 310 GeV) for large mass gap scenarios.
- Scenario2: combined observed limit of 280 GeV/170 GeV (expected at 285 GeV/180 GeV) for large gap/compressed mass scenarios.



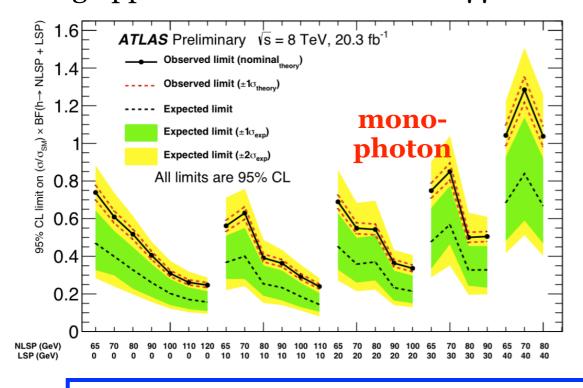

Searches via exotic higgs decaying to y(yy)+ LSP

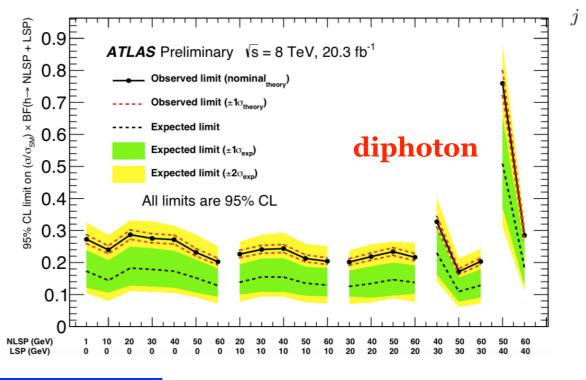
ATLAS-CONF-2015-001

- GMSB models predicts h decays to LSP($m_h/2$ < $m_{\widetilde{\chi}_1^0} < m_h$)
- NMSSM models also predicts such decays.
- Higgs is more boosted in transverse plane so decay products are close to each other
- BG: γ+jets,multijets,W/Z+γ, W/Z+jets,
 W(→ev), Others(WW,WZ,ZZ, ttbar)
- Most selection requirements were optimized using the Validation Region.
- γ+jets/multijets BG is estimated from data, using an "ABCD" method.
- Other BG taken from simulation and normalized to data in dedicated CR.

Requirement	Data	$(m_{NLSP}, m_{LSP}) = (100, 0) \text{ GeV signal}$
Data quality and trigger	1.53×10^{7}	337±4
Good vertex	1.53×10^{7}	336±4
$E_T^{\mathrm{miss}} > 50 \mathrm{GeV}$	1.26×10^{7}	279±3
Selected photon $p_T > 40 \text{ GeV}$	7.41×10^{5}	128±2
VBF $m_{jj} > 400$ GeV and $ \Delta \eta_{jj} > 3.0$	3.17×10^4	96.4±1.9
VBF jet $p_T \ge 40 \text{ GeV}$	6870	58.0±1.5
Lepton veto	6040	57.2±1.5
≤ 1 non-VBF jet	4620	50.4±1.4
$ \Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}, VBFjet) _{min} > 1.4$	600	30.1±1.1
$ \Delta\phi(E_{\rm T}^{\rm miss}, non - VBF jet) _{min} < 2.0$	565	28.2±1.0
OPV	425	27.6±1.0
$ \vec{p}_T^{TOT} \geq 50 \text{ GeV}$	337	26.9±1.0
$ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \gamma) \leq 1.8$	100	21.6±0.9
VBF $m_{jj} > 600$ GeV and $ \Delta \eta_{jj} > 4.0$	50	14.6±0.7

BG Estimation Strategy


Events / 0.2


Table showing BG yield and Data in SR and BG control regions

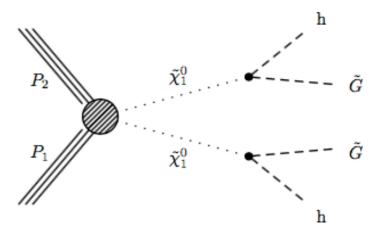
	SR	Region B	γ+jets A	e A	lvy A
$W(\rightarrow ev)$	$10.7 \pm 0.7 \pm 1.5$	$24.5 \pm 1.0 \pm 3.3$	$5.2 \pm 0.4 \pm 0.6$	$956 \pm 53 \pm 133$	$0.02 \pm 0.01 \pm 0.00$
$W(\rightarrow \mu \nu)$	$0.21 \pm 0.1 \pm 0.24$	$1.4 \pm 1.3 \pm 0.3$	$0.1 \pm 0.06 \pm 0.06$	0	$0.66 \pm 0.17 \pm 0.09$
W(o au u)	$4.2 \pm 0.8 \pm 0.6$	$4.7 \pm 2.6 \pm 2.4$	$1.7 \pm 0.6 \pm 0.8$	$62 \pm 3.4 \pm 37$	$0.9 \pm 0.5 \pm 0.33$
$W(\rightarrow l\nu)\gamma$	$7.2 \pm 0.5 \pm 2.3$	$11.9 \pm 0.6 \pm 4.1$	$3.6 \pm 0.3 \pm 1.2$	$4.0 \pm 0.3 \pm 0.2$	$6.0 \pm 0.4 \pm 0.4$
Z+jets	$0.52 \pm 0.28 \pm 0.54$	$3.7 \pm 3.5 \pm 3.5$	0	$12.3 \pm 7.1 \pm 2.9$	0
Z + γ	$0.61 \pm 0.05 \pm 0.2$	$2.6 \pm 1.4 \pm 1.4$	$1.1 \pm 0.8 \pm 0.8$	0	$0.37 \pm 0.37 \pm 0.09$
Others	$0.68 \pm 0.4 \pm 0.26$	$2.6 \pm 0.8 \pm 0.6$	$0.8 \pm 0.4 \pm 0.6$	$99.8 \pm 5.1 \pm 4.0$	$2.0 \pm 0.7 \pm 0.8$
γ +jets and multijet	13.9 + 1.7 + 3.5	$26.6 \pm 2.2 \pm 0.8$	$31.5 \pm 6.7 \pm 2.0$	$37 \pm 11 \pm 36$	0
Total background	$38.0 \pm 2.2 \pm 4.5$	$78 \pm 5.4 \pm 7$	$44 \pm 6.8 \pm 2.8$	$1170 \pm 55 \pm 143$	$10.0 \pm 1 \pm 0.9$
Data	50	78	44	1079	12
(m_{NLSP}, m_{LSP}) (100, 0) GeV	$14.6 \pm 0.7 \pm 1.2$	$8.5 \pm 0.6 \pm 0.6$	$3.0 \pm 0.3 \pm 0.5$	$0.3 \pm 0.1 \pm 0.1$	$0.11 \pm 0.06 \pm 0.07$

1.1 σ excess is observed

- Due to excess in SR, observed limits are higher than expected ones.
- Strong upper limits are obtained in $\gamma\gamma$ + E_T^{miss} final state also.

CMS ZH($\rightarrow \gamma(\gamma\gamma)$ + MET) result shows no excess with BR (H \rightarrow NLSP + LSP) = 100%

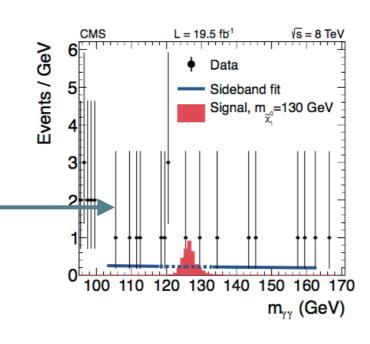
CMS PAS HIG-14-025

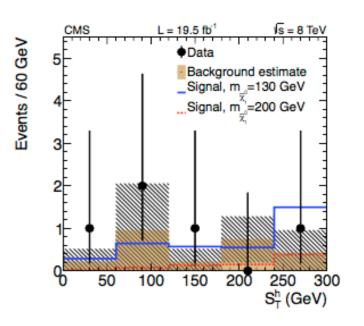

Searches via Higgs tagging: hh,hZ,ZZ topologies

CMS SUS-14-002 - PRD

- 1. R-parity conserving gauge-mediated SUSY-breaking model (GMSB).
- 2. nearly mass degenerate $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$ (higgsinos), Gravitino as LSP.
- 3. hh,hZ, ZZ searches with
- $h(\rightarrow b\bar{b}) h(\rightarrow b\bar{b}), h(\rightarrow b\bar{b}) h(\rightarrow \gamma\gamma), h(\rightarrow \gamma\gamma) h(\rightarrow ZZ/WW/\tau\tau)$ with atleast one e or μ .
- h(→ γγ) Z(→2 jets), h(→ γγ) Z(→ee/μμ/ττ), h(→bb) Z(→ee/μμ).
- ZZ (to multileptons), $ZZ \rightarrow l^+l^- + 2jets$.

hh topology

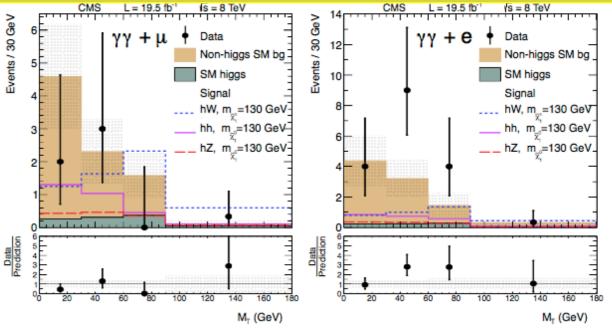



$h(\rightarrow b\bar{b}) h(\rightarrow \gamma\gamma)$

- exactly 2 b-jets with 95 < $m_{b\bar{b}}$ < 155 GeV.
- 2 y's with 120 < m_{yy} < 131 GeV
- no identified, isolated lepton.
- non-h BG estimated by fitting $m_{\gamma\gamma}$ distribution in SideBands (SB). —

"Discriminating Variable"

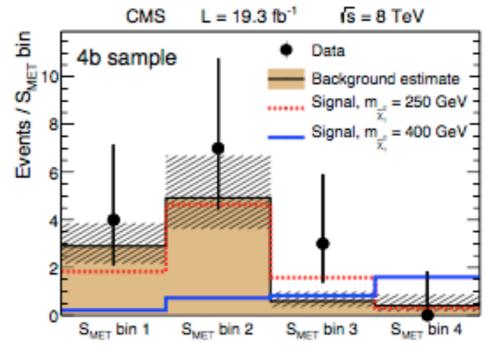
$$S_T^h = p_T^{h \to \gamma\gamma} + p_T^{h \to b\bar{b}}$$


no excess over SM prediction

hh (WW/ZZ/ $\tau\tau$), hZ, hW $\rightarrow \gamma\gamma + l^{\pm}(e,\mu)$

- \geq 1 μ or 1 e with $p_T > 15$ GeV.
- γ 's with 120 < $m_{\gamma\gamma}$ < 131 GeV.
- rejects e faking γ by vetoing near m_Z
 (86-96) GeV.

excess in e+ $\gamma\gamma$ final state (~ 2.1 σ) (events clustered at low E_T^{miss}) Combined excess (1.3 σ), considered consistent within statistical fluctuations.

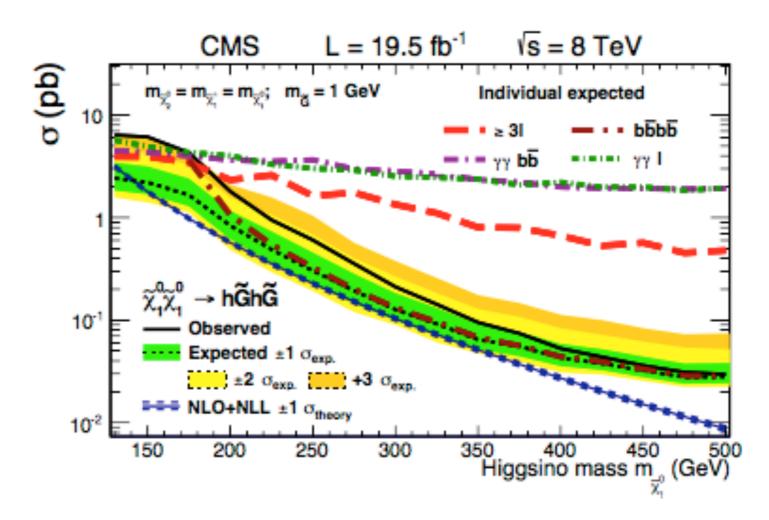

Combined Observed Events: 24 Combined SM prediction: 18.9±3.1

h(→bb) h(→bb)


3 regions defined having exactly 2, 3, and 4 b-jets.

Signal Region (SIG)

- •3 or 4 b-jets having $|\Delta m_{b\bar{b}}|$ < 20 GeV.
- $\max(\Delta R(j,j)) < 2.2$ and $100 < (m_{b\bar{b}}) < 140$ GeV.
- E_T^{miss} significance $S_{MET} > 30$.
- •SideBand (SB) : $|\Delta m_{b\bar{b}}| < 30 \text{ GeV}$, 90 < $(m_{b\bar{b}}) < 150 \text{ GeV}$.
- •BG estimated from 2 b-jet region with ABCD/ matrix element method using fitted ratio of BG events in SIG and SB regions.



no significant excess observed over SM prediction

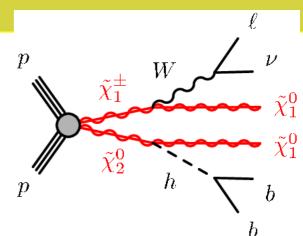
hh: GMSB interpretation

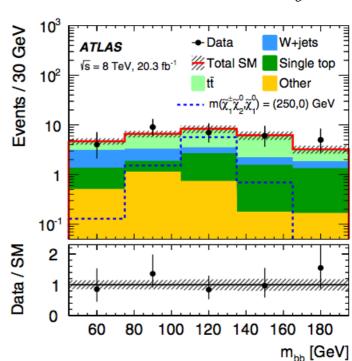
- Scenarios with $Br(\tilde{\chi}_1^0 \rightarrow h\tilde{G}) = 1$.
- hh→bbbb is more sensitive for masses above 200 GeV and loses sensitivity below 200 GeV (S_{MET} spectrum become SM-like).
- Multi-leptons and γγ are more sensitive at low higgsino mass.

Searches via Higgs tagging: hW topologies

A T L A S

Eur. Phys. J. C (2015) 75:208

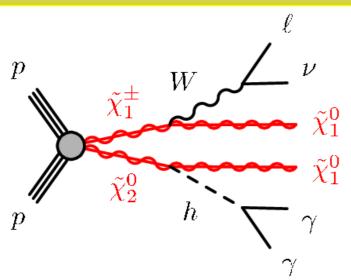

- 1. mass degenerate $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$ (pure wino) and $\tilde{\chi}_1^0$ LSP (bino).
- 2. prompt decays to W and h has ~100% branching ratios.
- 3. hW searches in h(\rightarrow bb) W(\rightarrow lv), h(\rightarrow yy) W(\rightarrow lv), h(\rightarrow WW/ZZ, $\tau\tau$) W(\rightarrow lv) final states.

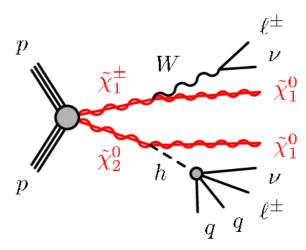

$h(\rightarrow b\bar{b}) W(\rightarrow l\nu)$

- exactly 2 b-jets, 1 lepton.
- Discrimination variables: E_T^{miss}, m_{CT}, m_T^W.
- Signal is defined in 5 bins of m_{bb} (47-75-**105-135**-165-185)
- ttbar and W+jets taken from simulation and normalized to data in dedicated CR.
- Multijet BG is estimated from data using Matrix Method (arXiv:1403.5294).

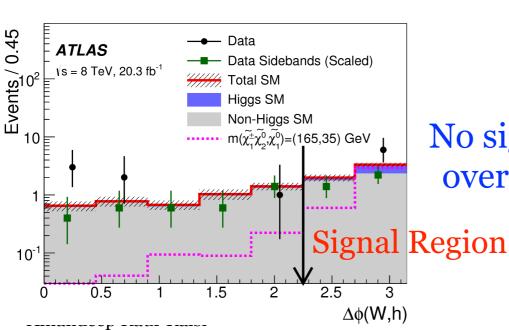
$$m_{\rm CT} = \sqrt{(E_{\rm T}^{b_1} + E_{\rm T}^{b_2})^2 - |\mathbf{p}_{\rm T}^{b_1} - \mathbf{p}_{\rm T}^{b_2}|^2},$$

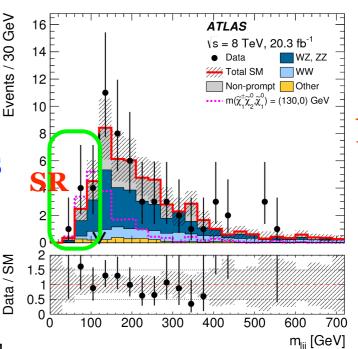
arXiv:0802.2879 [hep-ph]





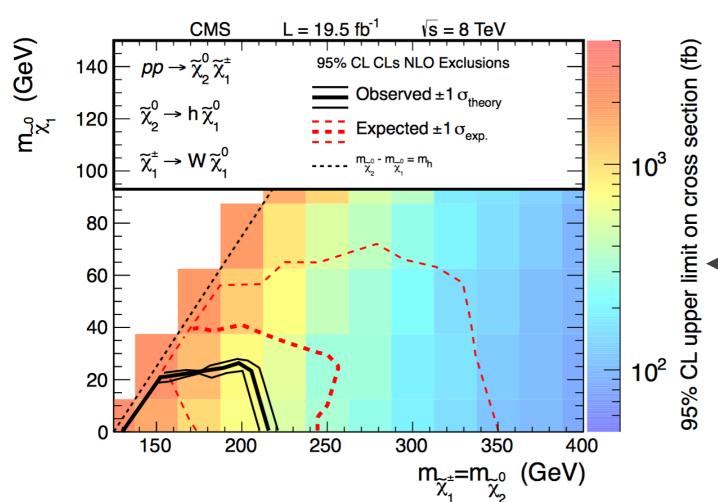
$h(\rightarrow \gamma \gamma) W(\rightarrow l \nu)$

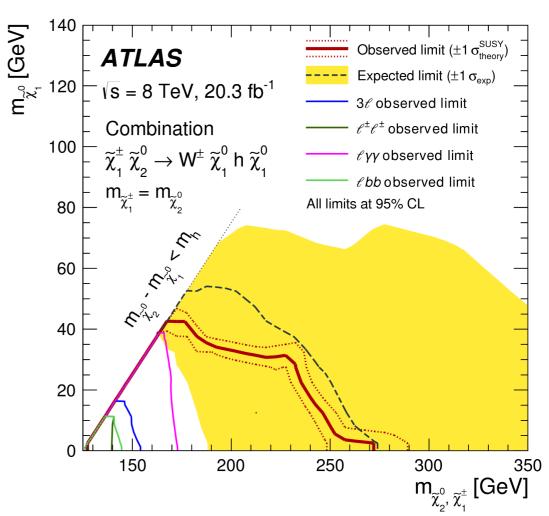

$h(\rightarrow WW) W\rightarrow l^{\pm}l^{\pm}\nu + jets$


- Discriminating Variables: $\Delta\Phi(W,h)$, $m_T^{W\gamma}$.
- contribution of non-h BG, modeled as $\exp(-\alpha m_{yy})$, is obtained from sidebands fitting m_{yy} distribution (100-160) GeV excluding higgs window.
- SM processes with Higgs are estimated from simulation.

- 6 SR differing in lepton flavour(e/μ) and number of jets.
- Dominant background is from WZ and ZZ, which is estimated from MC simulation.
- Non-prompt leptons are estimated with the Matrix Method (arXiv: 1403.5294).

No significant excess over SM prediction




ll+2jet final state

ATLAS

Results and Interpretation

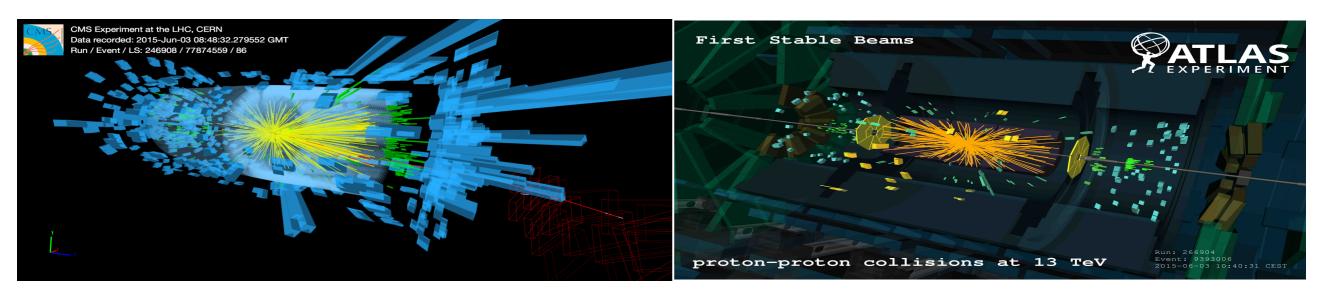
- Combined limit plot including ATLAS 3-lepton searches result. arXiv:1402.7029 JHEP
- 95% CL exclusion region extends to 250 GeV for $m_{\tilde{\chi}_1^0} = 0$.

CMS SUS-14-002 - PRD

Similar Search from CMS collaboration, the observed limit is 210 GeV.

ference, Vienna 14

Summary

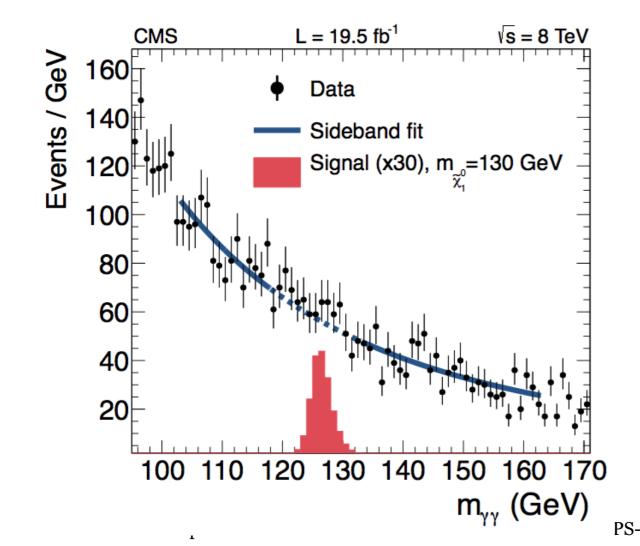

•ATLAS and CMS has variety of searches in EWK SUSY sector.

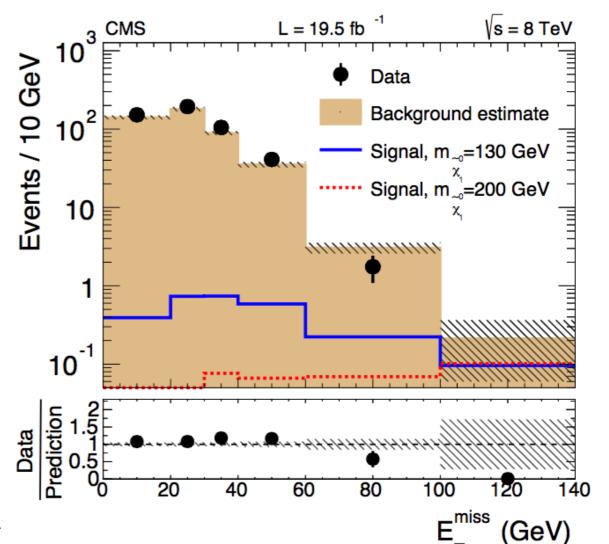
CMS:https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

ATLAS:https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

- Presented some of recent results from both experiments.
- Small excesses observed in some of channels (not significant yet).
- Limit on the chargino masses up to ~700 GeV.
- LHC Run2 already started. Both experiments started collecting 13 TeV data.

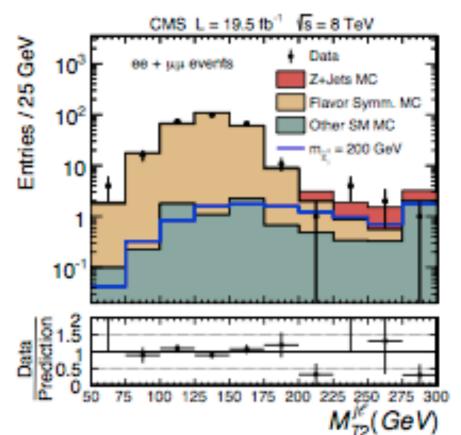
Stay tuned for interesting results !!!!

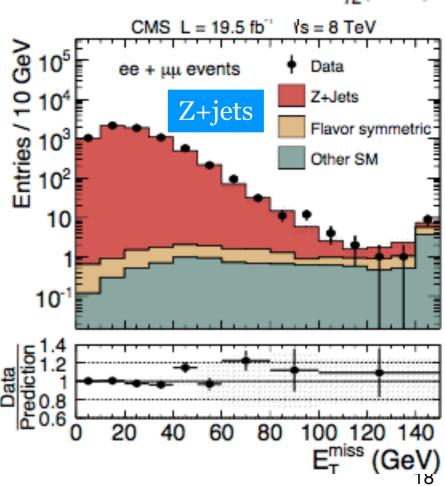

Supporting Material

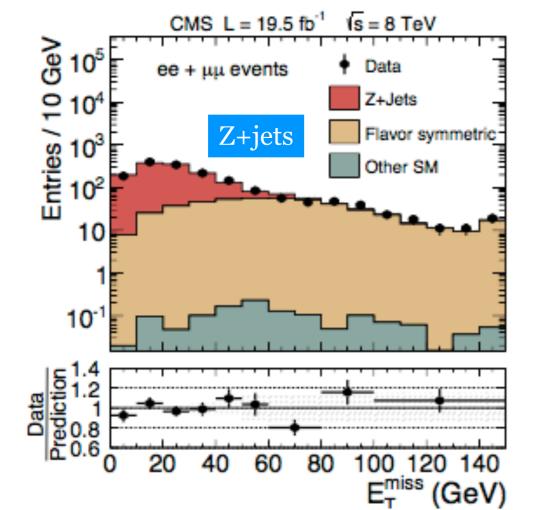

$hZ/hW \rightarrow \gamma\gamma + 2 jets$

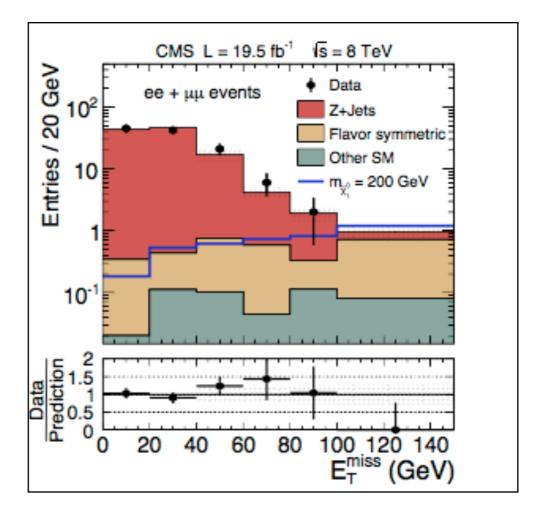
- dijet mass m_{jj} is (70,100) GeV.
- isolated lepton veto.
- event rejected if $m_{b\bar{b}}$ (95,155) GeV.
- Discriminating Variable : E_T^{miss}
- scaled E_T^{miss} distributions from 2 sidebands are consistent within their uncertainties.

$E_{\rm T}^{\rm miss}$ (GeV)	SM background	Data	hZ events, $m_{\tilde{\chi}_1^0} = 130 \text{GeV}$
0-20	288 ± 15	305	0.76 ± 0.03
20-30	183 ± 10	195	0.71 ± 0.03
30-40	91.1 ± 4.7	105	0.72 ± 0.03
40-60	72.0 ± 5.0	82	1.14 ± 0.04
60-100	12.5 ± 1.9	7	0.87 ± 0.03
>100	0.96 ± 0.61	0	0.37 ± 0.02


$h(\rightarrow b\bar{b}) Z(\rightarrow l^+l^-)$




- leptons can be electrons/muons.
- leptons with $p_T > 20$ GeV and $|\eta| < 2.4$
- $p_T > 30$ GeV for jets with $|\eta| < 2.5$, b-jets.
- exactly one lepton pair with $81 < m_{ll} < 101$ GeV.
- no third lepton and tau candidate.
- \geq 2 b-jets with 100< m_{b5} < 150 GeV.
- BG: Z+jets, FS(W+W-,ττ,ttbar,tW),
 Others (ZW,ZZ, ttbarV,VV V)
- $M_{T2}^{jl} > 200 \text{ GeV}, E_{T}^{miss}$


BG Estimation

- For Z+jets estimation, γ +jets template is used.
- Contribution of BG other than Z+jets is reduced by taking low E_T^{miss} < 50 GeV.
- FS BG is estimated from e μ CR (81< $m_{e\mu}$ < 101 GeV).
- BG procedures are validated using Data CR enriched with that BG.
- For Z+jets CR, no b-jets are required.
- For ttbar enriched region, M_{T2}^{jl} requirement is inverted.

no excess over SM prediction

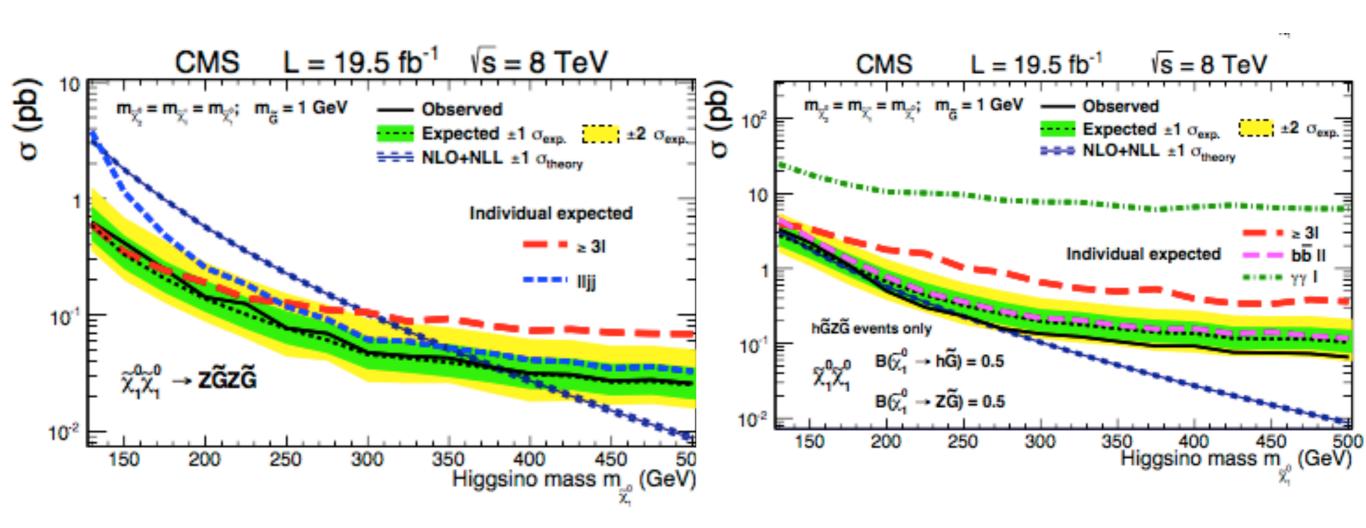
	$E_{\rm T}^{\rm miss} < 25{\rm GeV}$	$25 < E_{\mathrm{T}}^{\mathrm{miss}} < 50 \mathrm{GeV}$	$50 < E_{\mathrm{T}}^{\mathrm{miss}} < 60 \mathrm{GeV}$
Z+jets background	56.7 ± 1.9	43.3 ± 2.3	5.7 ± 1.2
Flavor symmetric background	0.4 ± 0.3	0.4 ± 0.3	0.4 ± 0.3
Other SM background	< 0.1	0.1 ± 0.1	0.1 ± 0.1
Total SM background	57.2 ± 1.9	43.8 ± 2.3	6.2 ± 1.2
Data	54	47	7
	$E_{\rm T}^{\rm miss} > 60{\rm GeV}$	$E_{\rm T}^{\rm miss} > 80{\rm GeV}$	$E_{\rm T}^{\rm miss} > 100{\rm GeV}$
Z+jets background	5.7 ± 1.8	2.2 ± 0.9	0.6 ± 0.3
Flavor symmetric background	2.4 ± 0.9	1.8 ± 0.7	1.6 ± 0.6
Other SM background	0.3 ± 0.2	0.3 ± 0.2	0.2 ± 0.1
Total SM background	8.5 ± 2.0	4.3 ± 1.2	2.4 ± 0.7
Data	8	2	0
hZ events			
$m_{\tilde{\chi}_{1}^{0}} = 130 \text{GeV}$	5.4 ± 0.1	3.1 ± 0.1	1.7 ± 0.1
$m_{\tilde{\chi}_{1}^{0}} = 150 \text{GeV}$	5.3 ± 0.1	3.3 ± 0.1	2.0 ± 0.1
$m_{\tilde{\chi}_{1}^{0}} = 200 \text{GeV}$	4.7 ± 0.1	4.2 ± 0.1	3.3 ± 0.1
$m_{\widetilde{\chi}_1^0} = 250 \text{GeV}$	3.5 ± 0.1	3.2 ± 0.1	2.8 ± 0.1

multilepton search

- three or more lepton searches are sensitive to hh and hZ channels (for low values of higgsino mass)
- at least 3 charged leptons including one τ_h candidate.

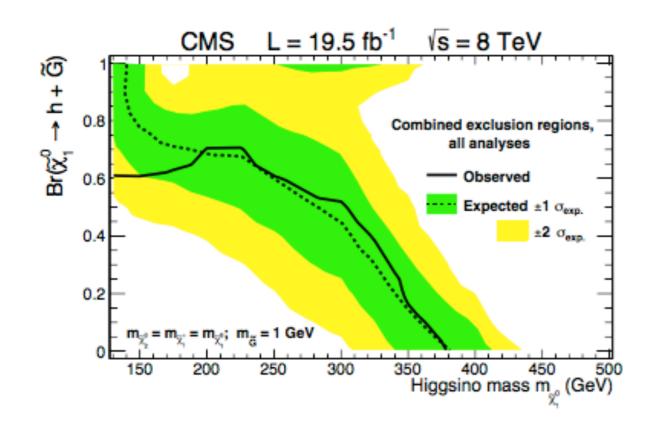
CMS-SUS-13-002 PRD

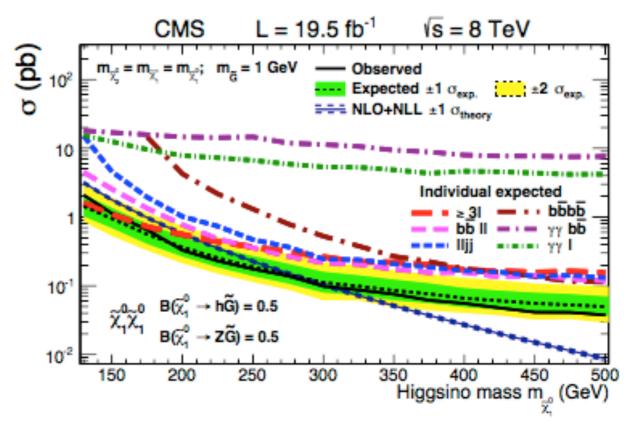
- Exclusive SR Categories are based on
- Number and flavor of leptons.
- presence or absence of OSSF lepton pair.
- Consistency of invariant mass of OSSF pair with Z boson.
- b-jets or no b-jets.
- E_T^{miss} and H_T .
- For interpretation of results, ordering of channels by their sensitivity.

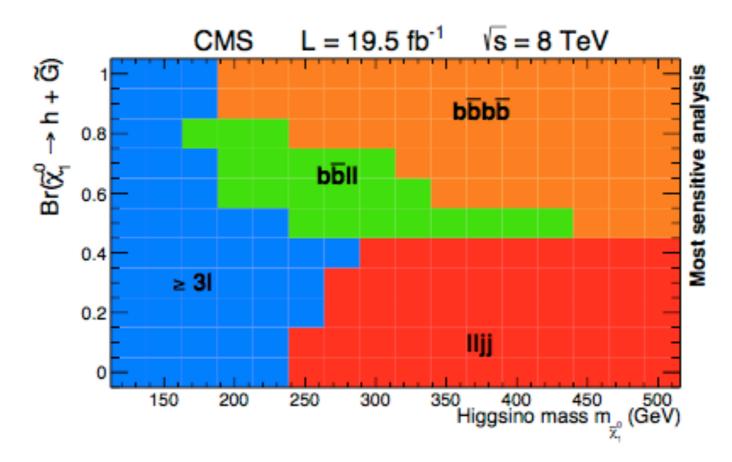

N_{ℓ}	$N_{\tau_{\rm h}}$	Nossf	$m_{\ell\ell}$	E _T ^{miss} (GeV)	SM	Data	hh events,
			range		background		$m_{\tilde{\chi}_{1}^{0}} = 150 \text{GeV}$
3	0	0	_	0-50	51 ± 11	53	3.1 ± 0.6
3	0	0	_	50-100	38 ± 15	35	2.7 ± 0.6
3	0	1	Below Z	50-100	130 ± 27	142	7.4 ± 1.6
3	1	0	_	50-100	400 ± 150	406	8.0 ± 1.4
4	0	1	Off Z	50-100	0.2 ± 0.1	0	0.5 ± 0.2
4	1	1	Off Z	0-50	7.5 ± 2.0	15	0.8 ± 0.2
4	1	1	Off Z	50-100	2.1 ± 0.5	4	0.7 ± 0.2

Combined local excess is 2.60 and is consistent within statistical fluctuation for large number of search channels (look-else where effect)

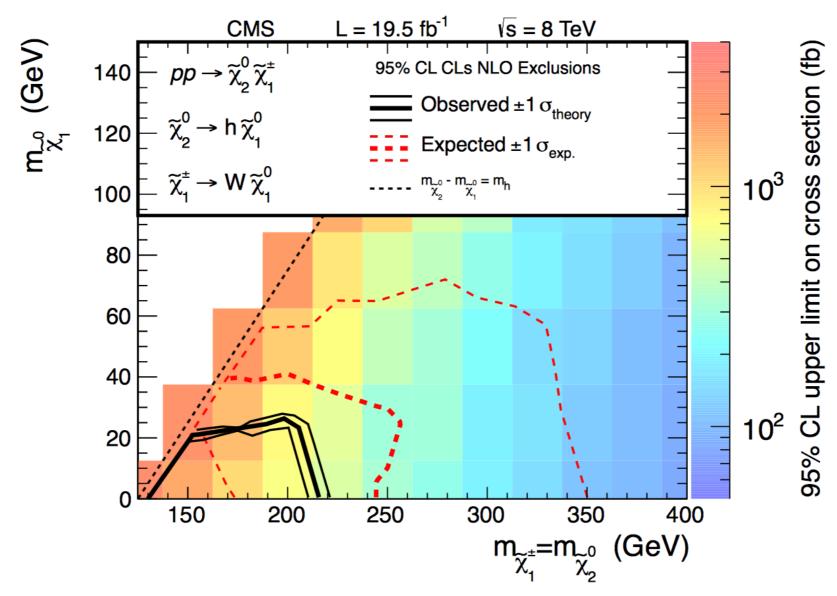
$ZZ \rightarrow l^+l^- + 2jets$



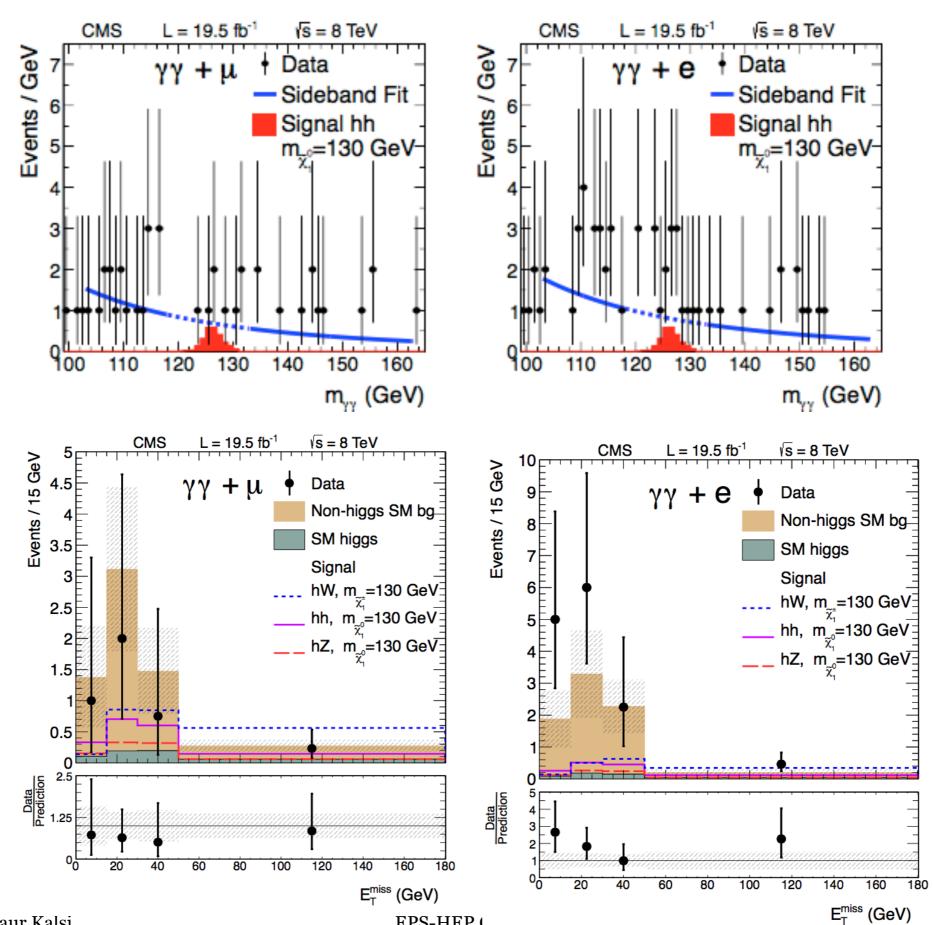

- most sensitive to SUSY ZZ channel.
- atleast one e^+e^- or $\mu^+\mu^-$ pair.
- no other lepton and b-jets.
- large E_T^{miss}
- atleast 2 jets.
- dilepton and dijet invariant mass consistent with Z



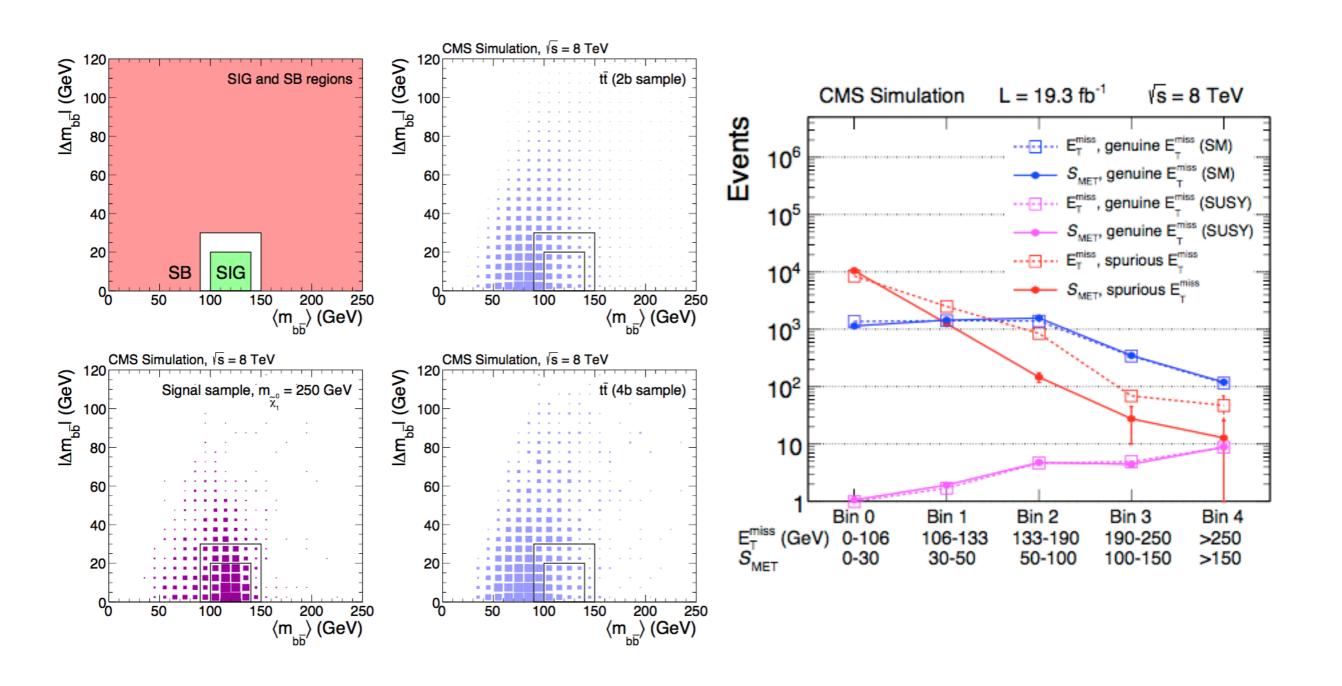
2 D exclusion limit and Analysis sensitivity



hW topology


- Event signature:
 - single electron/muon and bb pair.
 - same-sign ee,eμ,μμ pair (no third lepton)
 - 30r more leptons.
- $h(\rightarrow b\bar{b}) W(\rightarrow l\nu), h(\rightarrow ZZ,WW,\tau\tau) W(\rightarrow l\nu), h(\rightarrow \gamma\gamma) W(\rightarrow l\nu)$

hh (WW/ZZ/ $\tau\tau$), hZ, hW $\rightarrow \gamma\gamma + l^{\pm}(e,\mu)$

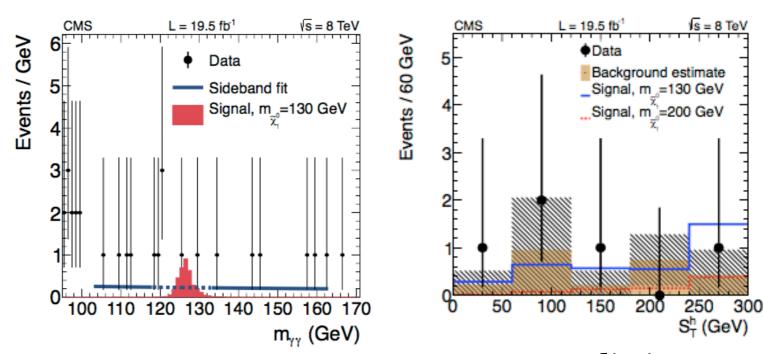


24

Searches via h(→bb) h(→bb)

Searches with $h \rightarrow \gamma \gamma$ decay

CMS SUS-14-002 - PRD


- Criteria for $h \rightarrow \gamma \gamma$ selection:
 - \triangleright 2 y's with p_T > 40, 25 GeV and $|\eta|$ < 1.44 with 120 < m_{yy} < 131 GeV (higgs tag region)
- Common BG estimate
 - \triangleright Fit m_{yy} distribution in side bands excluding tag region with power law function.
 - ▶ Integrate power-law function in higgs tag region to normalize continuum non-h SM BG.
 - ▶ BG shape in "discriminating variable" taken from average of lower and upper $m_{\gamma\gamma}$ sidebands.
 - ▶ BG from SM-Higgs added then.

$h(\rightarrow b\bar{b}) h(\rightarrow \gamma\gamma)$

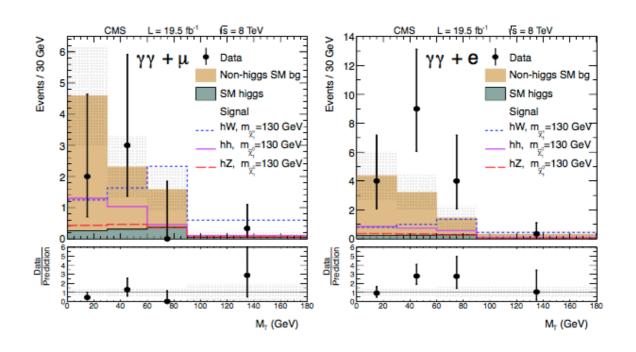
- required exactly 2 b-jets, p_T(jets) > 30 GeV
- no identified, isolated lepton
- \bullet $\Delta R(\gamma, j) > 0.5$
- 95< m_b < 155 GeV

"Discriminating Variable" $S_T^h = p_T^{h \to \gamma \gamma} + p_T^{h \to b\bar{b}}$

extends to higher value for signal

no excess over SM prediction

EPS-HEP Conference, Vienna


hh (WW/ZZ/ $\tau\tau$), hZ, hW $\rightarrow \gamma\gamma + l^{\pm}$ (e, μ) _{CMS SUS-14-002 - PRD}

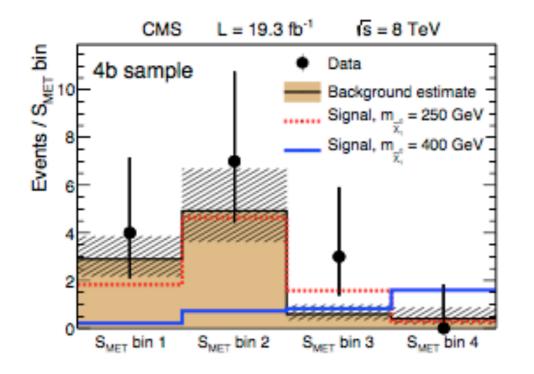
- required ≤ 1 b-jet (avoid overlap to $h \rightarrow b\bar{b}$ final state)
- $\geq 1\mu$ or 1 e with $p_T > 15$ GeV and $\Delta R(l,\gamma) > 0.5$
- rejects e faking γ by vetoing near m_z (86-96) GeV

"Discriminating Variable"

$$M_T = \sqrt{2E_T^{miss}p_T^l(1 - cos(\Delta\phi_{l, E_T^{miss}}))}$$

excess is seen (2.1σ) , consistent with in statistical fluctuations

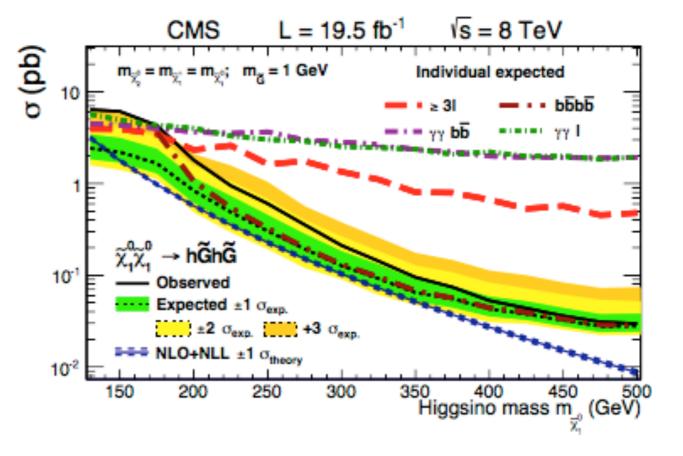
Searches via h(→bb) h(→bb) cms sus-14-002 - PRD


Signal Selections

- 4 or 5 jets with $p_T > 20$ GeV (including b-jets)
- no identified lepton
- E_T^{miss} significance $S_{MET} > 30$
- $|\Delta m_{b\bar{b}}|$ <20 GeV
- $\max(\Delta R(j,j))$ < 2.2 (to reject ttbar)
- $0.00 < (m_{b\bar{b}}) < 140 \text{ GeV}$

Background Estimation

- 3 control samples: 2b-jets, 3b-jets and 4 b-jets.
- Sample having 2b-jets only (region dominated by BG)
- Side Bands (SB) having $|\Delta m_{b\bar{b}}| < 30$ GeV and $100 < (m_{b\bar{b}}) < 140$ GeV.
- •ABCD method is used to calculate number of events in regions 3 b and 4b using SIG/SB ratio from 2b sample.



$\mathcal{S}_{ ext{MET}}$ bin	$\mathcal{S}_{ ext{MET}}$ range	SM background	Data	SM background	Data
		(3b-SIG)	(3b-SIG)	(4b-SIG)	(4b-SIG)
1	30 - 50	$6.7^{+1.4+1.0}_{-1.1-0.7}$	4	$2.9^{+0.8+0.5}_{-0.6-0.4}$	4
2	50 - 100	$11.6^{+1.9+0.9}_{-1.6-0.7}$	15	$4.9^{+1.1+1.4}_{-0.9}$	7
3	100 - 150	$2.44^{+0.84+0.56}_{-0.64-0.35}$	1	$0.59^{+0.39+0.09}_{-0.26-0.09}$	3
4	> 150	$1.50^{+0.82+0.64}_{-0.54-0.32}$	0	$0.40^{+0.39}_{-0.22}{}^{+0.26}_{-0.10}$	0

no significant excess observed over SM prediction

- Scenarios with $Br(\tilde{\chi}_1^0 \to h\tilde{G}) = 1$
- hh →bbbb is more sensitive for masses above 200 GeV and loses sensitivity below 200 GeV (Smet spectrum become SM-like).
- Multileptons and γγ are more sensitive at low higgsino mass.
- 3σ excess at masses below 170 GeV is mostly provided by multilepton analysis.

Searches via exotic higgs decaying to $\gamma(\gamma\gamma)$ + LSP

ATLAS-CONF-2015-001

		All C
Background	Distributions	Normalization
$W(\rightarrow ev)$	$W(\rightarrow ev)$ MC with $e\rightarrow \gamma$ misidentification rate from data	Data CR
W/Z + jets	W/Z + jets MC with jet $\rightarrow \gamma$ misidentification rate from MC	Data CR
$W\gamma/Z\gamma$	MC	Data CR
Top and diboson	MC	MC
γ + jets and multijet	Data CR	Data CR

Requirements	Main analysis	Electron CR	lvy CR	γ+jets VR
EM object(s)	Photon	Electron	Photon + lepton	Photon
$ \Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},VBFjet) _{min}$	> 1.4	> 1.4	> 1.4	≤ 1.4
$m_{jj} \leq 600 \text{ GeV or } \Delta \eta_{jj} \leq 4.0, \Delta \phi(E_T^{\text{miss}}, \gamma) \leq 1.8$	В	e B	<i>lνγ</i> Β	γ+jets B
$m_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 4.0, \text{ OPV}, p_T^{TOT} \ge 50 \text{ GeV} \text{ and}$	Α	e A	<i>lνγ</i> Α	γ +jets A
$ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \gamma) \leq 1.8$				

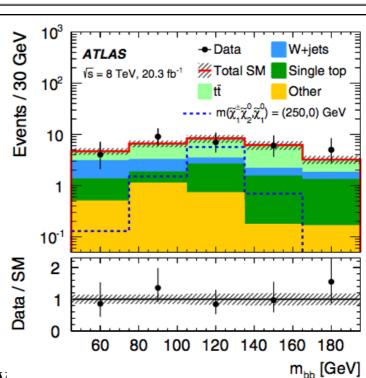
Systematic	$Z(\rightarrow \nu\nu)\gamma$	$W(\rightarrow l\nu)\gamma$	$Z(\rightarrow \nu\nu)$	$Z(\to \tau\tau)$	$W(\rightarrow e\nu)$	$W(\rightarrow \mu \nu)$	$W(\to \tau \nu)$	Others	γ+jets	Signal
W/Z+jets norm.	0	0	0.02	0.01	0.64	0.01	0.25	0	0.28	0
W/Z+ γ norm.	0.19	2.2	0	0	0	0	0	0	0.28	0
$e \rightarrow \gamma$ misid. rate	0	0	0	0	0.54	0	0	0	0	0
jet $\rightarrow \gamma$ misid. rate	0	0	0.28	0.24	0	0.01	0.42	0	0	0
MC γ rate	0	0	0	0	0	0.2	0.17	0	0	0
Trigger efficiency	0.01	0.14	0.01	0	0.21	0	0.08	0.01	0	0.29
ABCD	0	0	0	0	0	0	0	0	3.5	0
Jet energy resolution	0.03	0.22	0.28	0	0.43	0.09	0.18	0.14	0.28	0.58
Jet energy scale	0.02	0.5	0.28	0.02	1.2	0.08	0.17	0.22	0.14	1.0
γ energy resolution	0.01	0.07	0	0	0	0	0.19	0	0	0.15
γ energy scale	0.02	0.22	0.01	0	0	0	0.19	0	0	0.15
Cross section	0	0	0	0	0	0	0	0	0	0.8
Total	0.2	2.3	0.48	0.24	1.5	0.24	0.65	0.26	3.5	1.2

Searches via h(→bb) W(→lν)

BG: ttbar, W+jets, tW, other rare SM

Discrimination variables: E_T^{miss}, m_{CT}, m_W

Signal is defined in 5 bins of m_{bb} (47-75-**105-135**-165-185)


$$m_{\text{CT}} = \sqrt{(E_{\text{T}}^{b_1} + E_{\text{T}}^{b_2})^2 - |\mathbf{p}_{\text{T}}^{b_1} - \mathbf{p}_{\text{T}}^{b_2}|^2},$$

arXiv:0802.2879 [hep-ph]

Selection Criteria in SR, CR and VR

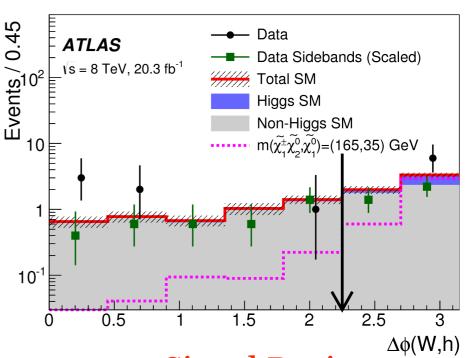
SRℓbb-1	SRℓbb-2	CRℓbb-T	CRℓbb-W	VRℓbb-1	VRℓbb-2
1	1	1	1	1	1
2–3	2–3	2–3	2	2–3	2–3
2	2	2	1	2	2
>100	>100	>100	>100	>100	>100
>160	>160	100–160	>160	100-160	>160
100-130	>130	>100	>40	40–100	40–100
	1 2-3 2 >100 >160	1 1 2-3 2-3 2 2 >100 >100 >160	1 1 1 2-3 2-3 2-3 2 >100 >100 >100 100-160	1 1 1 1 2-3 2-3 2 2 2 2 1 >100 >100 >100 >100 >160 >160 100-160 >160	1 1 1 1 1 2-3 2-3 2-3 2 2-3 2 2 2 1 2 >100 >100 >100 >100 >100 >160 >160 100-160 >160 100-160

- ■BG are estimated from MC but the normalization factors are estimated by back-ground only fitting to data in CRlbb-T and CRlbb-W.
- BG modelling is validated from VRlbb-1 and VRlbb-2 using background only fit.

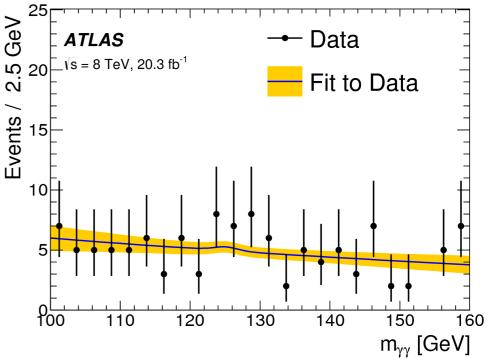
31

Searches via $h(\rightarrow yy) W(\rightarrow l\nu)$

Eur. Phys. J. C (2015) 75:208


Signal Regions

	$SR\ell\gamma\gamma$ -1	$SR\ell\gamma\gamma$ -2	$VR\ell\gamma\gamma$ -1	VRℓγγ-2
n_{lepton}	1	1	1	1
n_{γ}	2	2	2	2
$E_{\rm T}^{\rm miss}$ (GeV)	>40	>40	<40	_
$\Delta \phi(W,h)$	>2.25	>2.25	_	< 2.25
$m_{\rm T}^{W\gamma_1}({\rm GeV})$	>150	<150		
	and	or	_	_
$m_{\mathrm{T}}^{W\gamma_2}(\mathrm{GeV})$	>80	<80		


- Signal region higgs mass window (120-130) GeV
- major BG: multijets and Zγ
- contribution of non-higgs BG , modeled as $\exp(-\alpha m_{\gamma\gamma})$, is obtained from sidebands fitting $m_{\gamma\gamma}$ distribution (100-160) GeV excluding higgs window.
- SM processes with Higgs are estimated from simulation.

Observed and expected rate in SR & VR

	SRℓγγ-1	SRℓγγ-2	VRℓγγ-1	VRℓγγ-2
Observed events	1	5	30	26
SM expectation	1.6 ± 0.4	3.3 ± 0.8	30.2 ± 2.3	20.4 ± 1.9
Non-Higgs	0.6 ± 0.3	3.0 ± 0.8	29.2 ± 2.3	19.8 ± 1.9
Wh	0.85 ± 0.02	$\boldsymbol{0.23 \pm 0.01}$	0.71 ± 0.02	0.29 ± 0.01
Zh	0.04 ± 0.01	$\boldsymbol{0.02 \pm 0.01}$	$\boldsymbol{0.14 \pm 0.02}$	0.05 ± 0.01
$t\bar{t}h$	0.14 ± 0.01	$\boldsymbol{0.02 \pm 0.01}$	0.11 ± 0.01	0.25 ± 0.01

Signal Region

BG only fit to observed $m_{\gamma\gamma}$ in $VR: VRl\gamma\gamma-2$

erence, Vienna

Searches via $h(\rightarrow WW \rightarrow l^{\pm}\nu + jets) W(\rightarrow l^{\pm}\nu)$

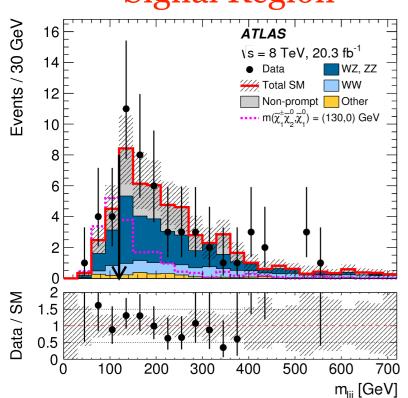
Eur. Phys. J. C (2015) 75:208

6 SR (lepton flavour and N_{jets})

- 2 leptons with p_T > 30 GeV (or 20 GeV) with no third lepton
- 1,2 or 3 central jets with p_T >20 GeV (no b-jets)
- •BG: WW, WZ, ZZ, and backgrounds with non-prompt leptons (from heavy flavoured decays, γ conversions, misID jets)

	SRee-1	SRee-2	SD 1	CD 2	SReµ-1	SD 2
	SKee-1	SRee-2	$SR\mu\mu$ -1	$SR\mu\mu$ -2	SReμ-1	SReμ-2
Lepton flavours	ee	ee	$\mu\mu$	$\mu\mu$	$e\mu$	$e\mu$
$n_{ m jet}$	1	2 or 3	1	2 or 3	1	2 or 3
Leading lepton p_T (GeV)	>30	>30	>30	>30	>30	>30
Sub-leading lepton p_T (GeV)	>20	>20	>20	>30	>30	>30
$ m_{\ell\ell} - m_Z $ (GeV)	>10	>10	-	_	_	-
$\Delta\eta_{\ell\ell}$	-	_	<1.5	<1.5	<1.5	<1.5
$E_{\mathrm{T}}^{\mathrm{miss,rel}}$ (GeV)	>55	>30	_	_	_	-
$m_{\rm eff}$ (GeV)	>200	_	>200	>200	>200	>200
$m_{\rm T}^{\rm max}$ (GeV)	-	>110	>110	_	>110	>110
$m_{\ell j}$ or $m_{\ell j j}$ (GeV)	<90	<120	<90	<120	<90	<120

Validation regions having lepton $p_T\, and\,\, N_{jets}$ only , m_{lj} > 90 and m_{llj} > 120 GeV

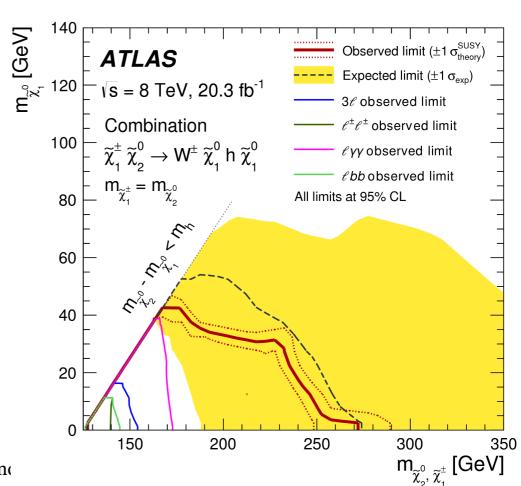

Background Estimation

Dibosons are estimated from simulation.

arXiv:1403.5294

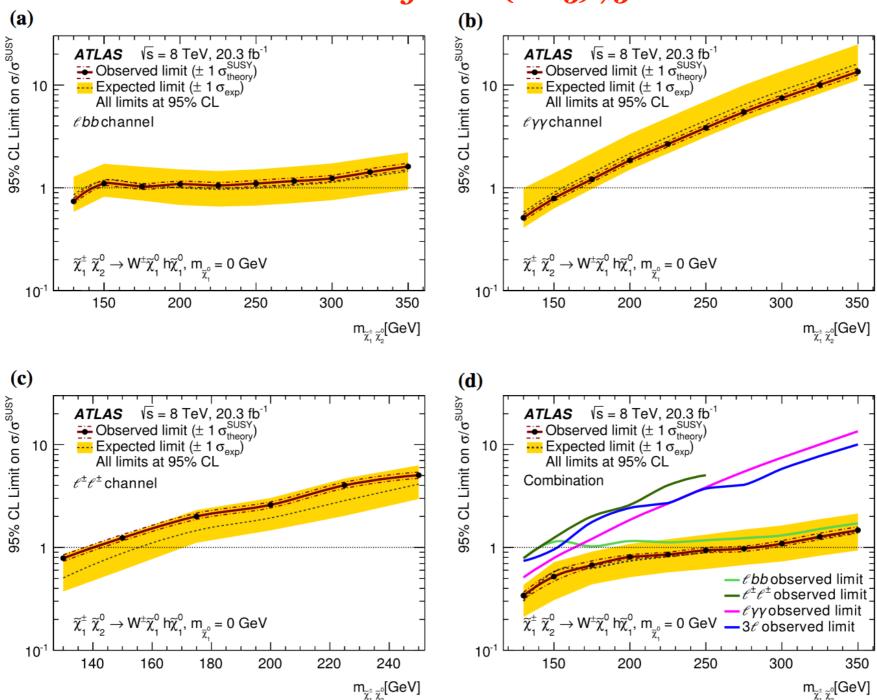
- matrix element method is used to estimate non-prompt backgrounds.
- Efficiencies for prompt and non-prompt leptons passing signal lepton requirements are calculated as function of p_T and η of leptons for each process in control regions.
- Contribution from each BG used to calculate weighted average efficiency.
- Charge mismeasurement probability measured in data and is < 1% (for ee).
- BG estimation tested in validation regions.

Signal Region



	SRee-1	SRee-2	$SR\mu\mu$ -1	$SR\mu\mu$ -2	$SRe\mu$ -1	$SRe\mu$ -2
Observed events SM expectation	$\begin{array}{c} 2 \\ 6.0 \ \pm 1.2 \end{array}$	$\begin{array}{c} 1 \\ 2.8 \ \pm 0.8 \end{array}$	$\frac{6}{3.8} \pm 0.9$	$\begin{array}{c} 4 \\ 2.6 \ \pm 1.1 \end{array}$	$8 \\ 7.0 \pm 1.3$	$\begin{array}{c} 4 \\ 1.9 \ \pm 0.7 \end{array}$
Non-prompt WZ, ZZ WW Other	3.4 ± 1.0 2.2 ± 0.6 0.33 ± 0.31 0.13 ± 0.13	$\begin{array}{c} 1.6 & \pm 0.5 \\ 0.7 & \pm 0.4 \\ 0.22 \pm 0.23 \\ 0.31 \pm 0.31 \end{array}$	0.00 ± 0.20 3.4 ± 0.8 0.24 ± 0.29 0.14 ± 0.14	0.3 ± 0.4 1.8 ± 0.9 0.4 ± 0.5 0.06 ± 0.06	3.0 ± 0.9 3.3 ± 0.8 0.4 ± 0.4 0.19 ± 0.17	0.48 ± 0.28 1.1 ± 0.5 0.23 ± 0.26 0.09 ± 0.08

Table showing BG yield and Data in different Signal Regions (consistent with SM prediction)


- Combined limit plot including ATLAS 3-lepton searches result. arXiv:1402.7029 JHEP
- 95% CL exclusion region extends to 250 GeV for $m\tilde{\chi}_1^0 = 0$.

Searches via $h(\rightarrow WW \rightarrow l^{\pm} + jets) W(\rightarrow l^{\pm}\nu)$

Eur. Phys. J. C (2015) 75:208

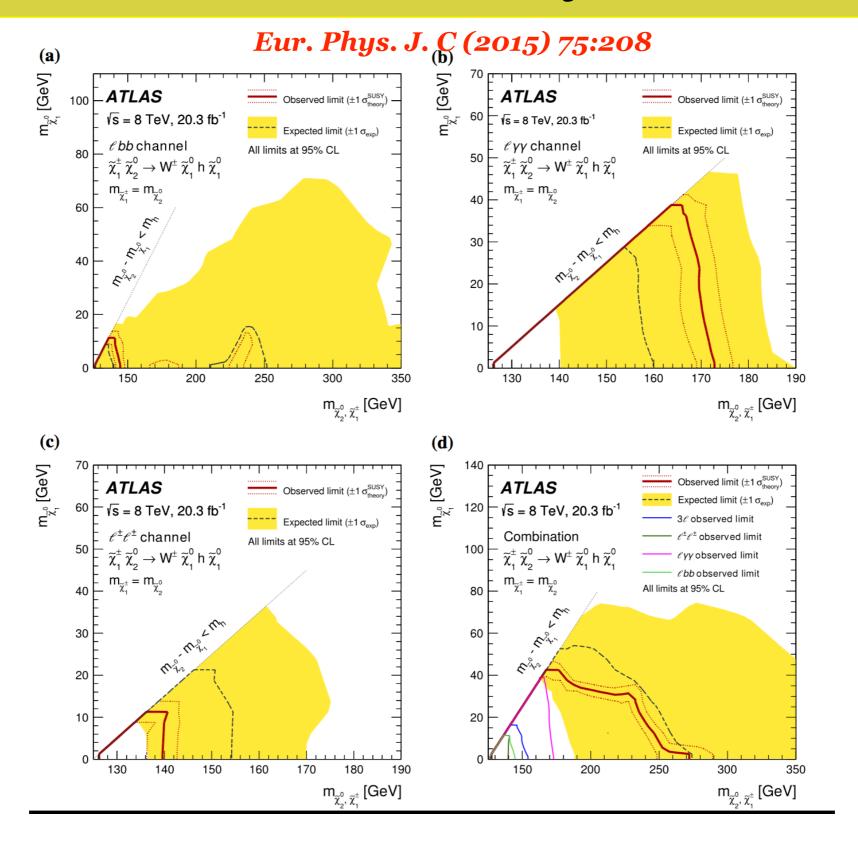
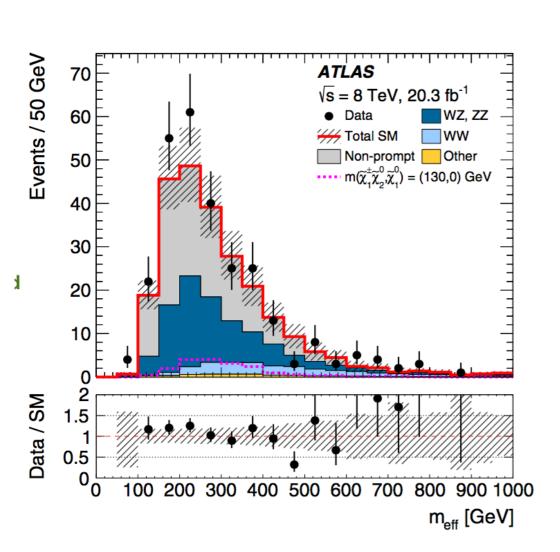
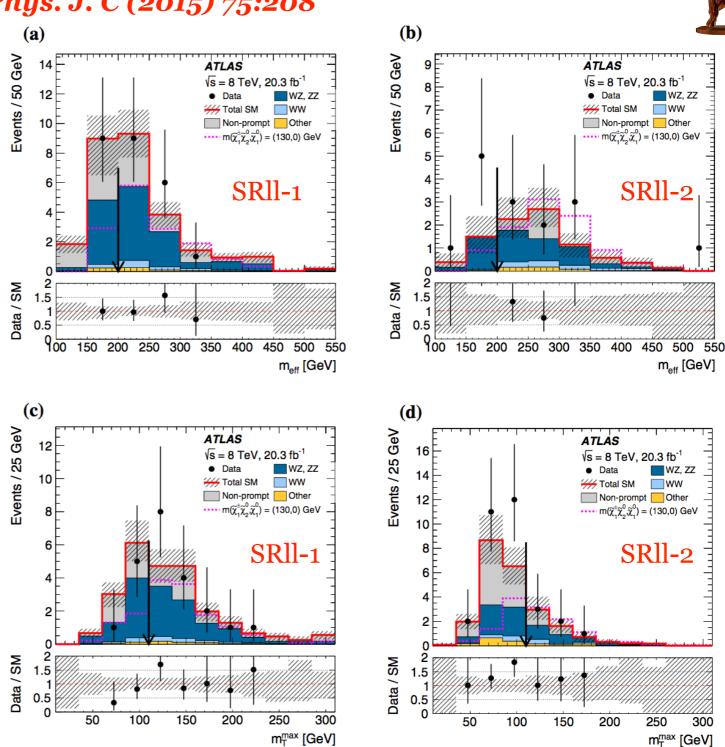


Fig. 7 Observed (*solid line*) and expected (*dashed line*) 95 % CL upper limits on the cross section normalised by the simplified model prediction as a function of the common mass $m_{\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0}$ for $m_{\tilde{\chi}_1^0}=0$. The combination in **d** is obtained using the result from the ATLAS three-lepton search [21] in addition to the three channels reported in this paper. The *dash-dotted lines* around the observed limit represent the results

obtained when changing the nominal signal cross section up or down by the $\pm 1\sigma_{\rm theory}^{\rm SUSY}$ theoretical uncertainty. The *solid band around the expected limit* represents the $\pm 1\sigma_{\rm exp}$ uncertainty band where all uncertainties, except those on the signal cross sections, are considered. **a** One lepton and two *b*-jets channel, **b** one lepton and two photons channel, **c** same-sign dilepton channel, **d** combination

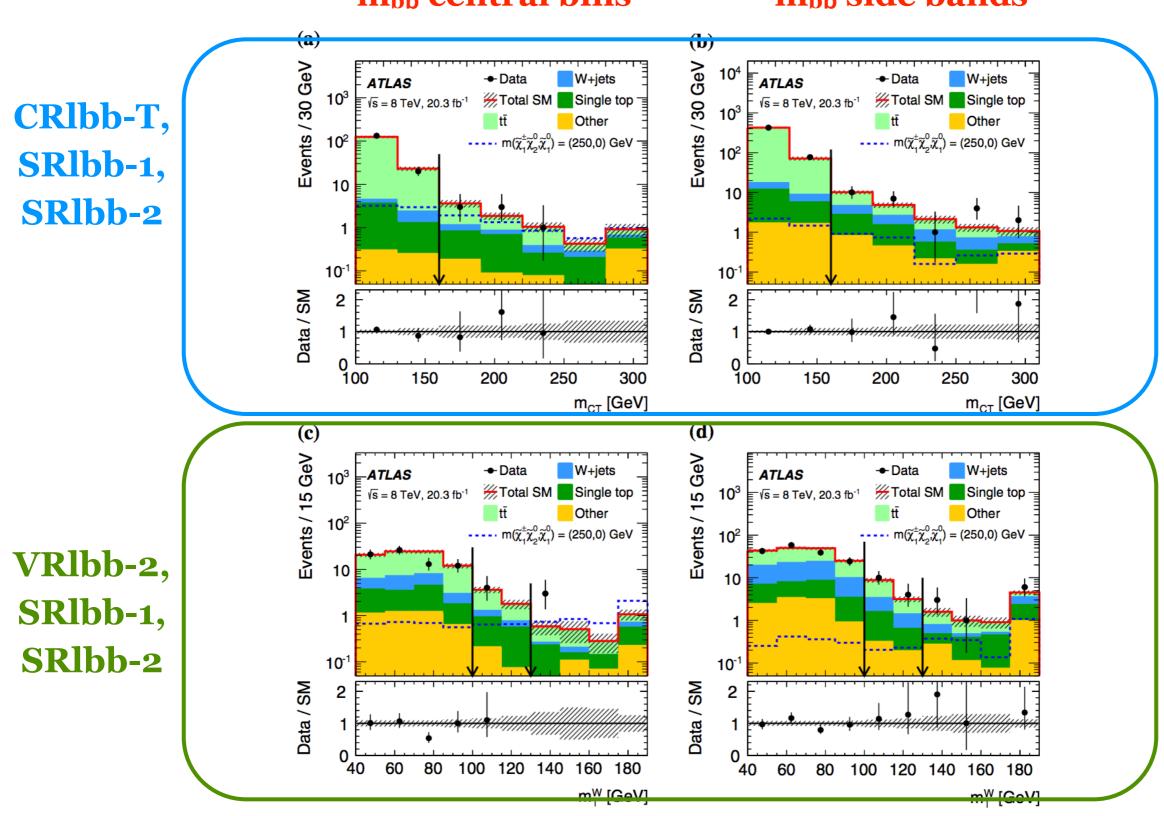

Searches via $h(\rightarrow WW \rightarrow l^{\pm} + jets) W(\rightarrow l^{\pm}\nu)$



Searches via $h(\rightarrow WW \rightarrow l^{\pm} + jets) W(\rightarrow l^{\pm}\nu)$

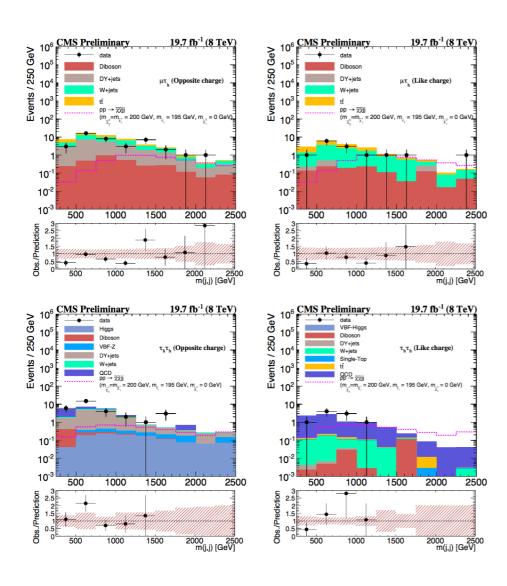
Eur. Phys. J. C (2015) 75:208

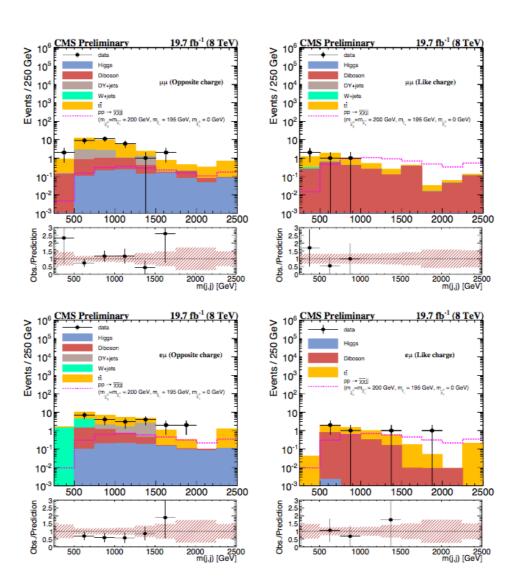
Data-MC agreement in VR of same-sign eµ region


Distributions in SR for same-sign lepton search

Searches via $h(\rightarrow b\bar{b}) W(\rightarrow l\nu)$

m_{bō} side bands





Searches via VBF process with ≥ 2 leptons

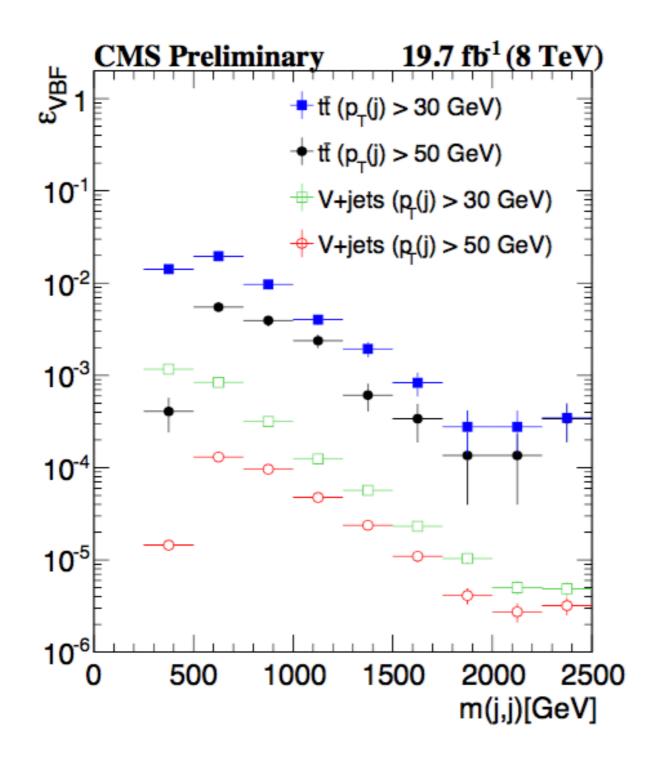
CMS PAS SUS-14-005

mjj plots in individual channels

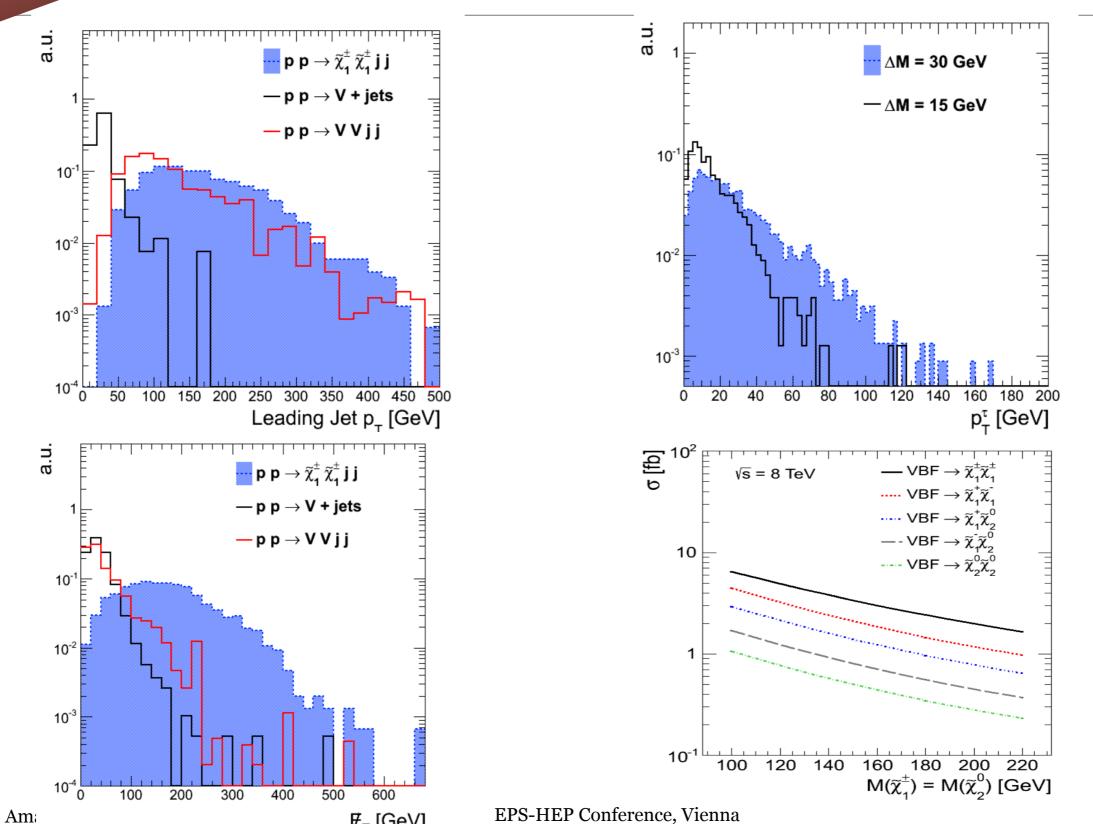
CMS PAS SUS-14-005

Table 3: Cumulative signal acceptance for $m_{ij} > 250$ GeV.

		-	
channel	$BR(\geq 1\ell_1 \& \geq 1\ell_2)$	<i>ll</i> +MET	VBF
$\mu^{+}\tau_{h}^{-}(\mu^{\pm}\tau_{h}^{\pm})$	0.399	0.0197 (0.0196)	0.0075 (0.0074)
$e^{+}\mu^{-}(e^{\pm}\mu^{\pm})$	0.152	0.0367 (0.0373)	0.0140 (0.0140)
$\tau_h^+ \tau_h^- (\tau_h^{\pm} \tau_h^{\pm})$	0.717	0.0098 (0.0097)	0.0092 (0.0093)
$\mu^{+}\mu^{-}(\mu^{\pm}\mu^{\pm})$	0.081	0.0181 (0.0180)	0.0070 (0.0172)


Table 4: Simulated yield of signal events. The terms in only curly brackets, $\{m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\tau}}\}$, represent the scenarios where $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\tau}) = 5$ GeV, while the terms in parenthesis, $(\{m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\tau}}\})$, are for scenarios where $m(\tilde{\tau}_1) = \frac{1}{2}m(\tilde{\chi}_1^0) + \frac{1}{2}m(\tilde{\chi}_1^{\pm})$.

(1) 2 ((1) - 2 ((1)								
$\{m(\tilde{\chi}_1^{\pm}), m(\tilde{\tau})\}$ [GeV]	$\mu^{\pm}\mu^{\pm}jj$ (Loose)	$\mu^{\pm}\mu^{\mp}jj$ (Tight)	еµјј	$\mu \tau_h jj$	$ au_h au_h j j$			
	$m(\tilde{\chi}_1^0) = 0 \mathrm{GeV}$							
{100, 95} ({100, 50})	16.22(28.94)	6.61(11.79)	13.21(23.57)	7.10(9.36)	8.65(10.73)			
{200, 195} ({200, 100})	5.42(9.67)	1.76(3.14)	3.52(6.28)	4.53(5.97)	3.76(4.67)			
{300, 295} ({300, 150})	2.27(4.05)	0.68(1.21)	1.37(2.44)	1.85(2.54)	1.53(2.04)			
{400, 395} ({400, 200})	0.57(1.02)	0.17(3.03)	0.35(0.62)	0.46(0.63)	0.38(0.51)			
$m(\tilde{\chi}_1^0) = 50 \text{ GeV}$								
{100, 95} ({100, 75})	5.66(2.21)	3.30(1.29)	6.60(2.58)	4.34(1.51)	2.07(0.41)			
{200, 195} ({200, 125})	3.03(5.41)	1.11(1.98)	2.21(3.94)	3.06(4.04)	2.41(2.99)			
{300, 295} ({300, 175})	1.27(2.27)	0.60(1.07)	1.19(2.12)	1.66(2.28)	1.40(1.86)			
{400, 395} ({400, 225})	0.34(0.61)	0.16(0.29)	0.32(0.57)	0.43(0.59)	0.36(0.48)			
$\Delta m(\tilde{\chi}_1^{\pm} - \tilde{\chi}_1^0) = 50 \mathrm{GeV}$								
{200, 195} ({200, 175})	1.38(0.54)	0.85(0.33)	1.65(0.65)	0.99(0.35)	0.46(0.09)			
{300, 295} ({300, 275})	0.47(0.18)	0.28(0.11)	0.58(0.23)	0.40(0.14)	0.20(0.04)			
{400, 395} ({400, 375})	0.12(0.05)	0.08(0.03)	0.15(0.06)	0.10(0.03)	0.05(0.01)			


Searches via VBF process with ≥ 2 leptons

CMS PAS SUS-14-005

10.1103/PhysRevD. 87.035029

VBF topology cuts

₽_⊤ [GeV]