Error reduction using the covariant approximation averaging

Eigo Shintani (Mainz→AICS)

Hartmut Wittig(Mainz) and collaboration with Mainz-CLS group

HEP2015, Vienna, Austria between 22 to 29 July

OUTLINE

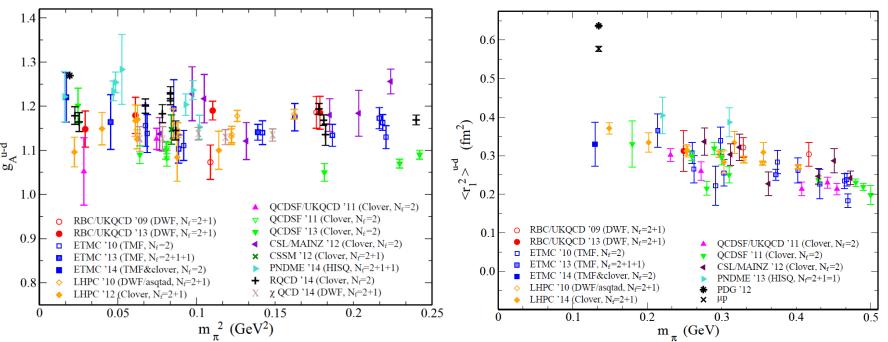
Introduction

- Error reduction technique
- Application
 - Nucleon mass
 - Axial charge, Scalar and tensor charge
 - Isovector form factor and Charge radius
- Summary

1. Introduction

"Puzzle" of nucleon form factor in LQCD

Constantinou, lattice 2014



- There is slight tension from experiment, even in different group $\Delta g_A \sim 5 10\%$, $\Delta r_E^2 \sim 10 20\%$
- Large statistical error of Monte-Carlo simulation is serious issue.
- Careful estimate of systematic uncertainty should be carried out.

1. Introduction

Lattice computation of matrix element

▶ 2pt, 3pt function

$$\langle 0|\mathcal{N}(t)\mathcal{N}^{\dagger}(0)|0\rangle = |\langle 0|\mathcal{N}|N\rangle|^{2}e^{-m_{N}t} + |\langle 0|\mathcal{N}|N'\rangle|^{2}e^{-m'_{N}t} + \cdots$$

First excited state contamination

$$\langle 0|T\{\mathcal{N}(t_{s},0)J_{\mu}(t,q)\mathcal{N}^{\dagger}(0,p)|0\rangle$$

$$=\langle 0|\mathcal{N}|N\rangle\langle N|J_{\mu}|N\rangle\langle N|\mathcal{N}^{\dagger}|0\rangle e^{-E_{N}t-m_{N}(t_{s}-t)} + \langle 0|\mathcal{N}|N'\rangle\langle N'|J_{\mu}|N'\rangle\langle N'|\mathcal{N}^{\dagger}|0\rangle e^{-E'_{N}t-m'_{N}(t_{s}-t)} + \cdots$$

$$\simeq Z_{N}(0)Z_{N}(p)e^{-E_{N}t-m_{N}(t_{\text{sep}}-t)} \times \left[\{G_{X},g_{A}\} + c_{1}e^{-\Delta(t_{\text{sep}}-t)} + c_{2}e^{-\Delta't}\right]$$

Matrix element First excited state contamination of ground state $\Delta = m_N' - m_N > 0, \Delta' = E_N' - E_N > 0$

Signal-to-noise ratio of nucleon correlation function

$$S/N \sim \sqrt{N} \exp[-(m_N - 3m_\pi/2)t]$$

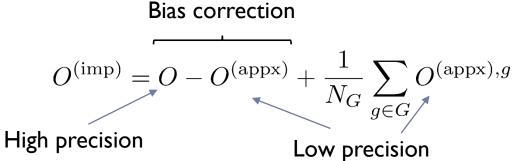
Our strategy:

- To much reduce statistical error, the <u>all-mode-averaging (AMA)</u> is applied.
- Systematic study of excited state contamination is performed in light pion mass and large volume, $m_{\pi} L > 4$.

All-mode-averaging

Blum, Izubuchi, ES (2013)

- Effective technique to reduce statistical error of correlation function without additional computational cost, by using covariant symmetry
 - Master formula



- $ightharpoonup O^{(appx)}$ should be good approximation to O.
- Computation cost of O(appx) is much small.
- Covariant symmetry of O^(appx) guarantees no bias.

All-mode-averaging

Blum, Izubuchi, ES (2013)

- Effective technique to reduce statistical error of correlation function without additional computational cost, by using covariant symmetry
 - Master formula

Bias correction
$$O^{(\text{appx})} = O - O^{(\text{appx})} + \frac{1}{N_G} \sum_{g \in G} O^{(\text{appx}),g}$$
 Computation cost of O(appx) is much small.
$$O^{(\text{appx})} = O - O^{(\text{appx})} + \frac{1}{N_G} \sum_{g \in G} O^{(\text{appx}),g}$$
 Covariant symmetry of O(appx) guarantees no bias

- approximation to O.
- $O^{(appx)}$ guarantees no bias.

Error reduction formula

$$\frac{\sigma^{\text{imp}}}{\sigma} \simeq \sqrt{\frac{1}{N_G} + 2(1 - r) + \frac{1}{N_g^2} \sum_{g \neq g'} r_{gg'}}$$

$$r = \frac{\langle \Delta O \Delta O^{(\text{appx})} \rangle}{\sigma \sigma^{(\text{appx})}} \qquad r_{gg'} = \frac{\langle \Delta O^{(\text{appx}), g} \Delta O^{(\text{appx}), g'} \rangle}{\sigma^{(\text{appx}), g} \sigma^{(\text{appx}), g'}}$$

r: correlation between O and O(appx)

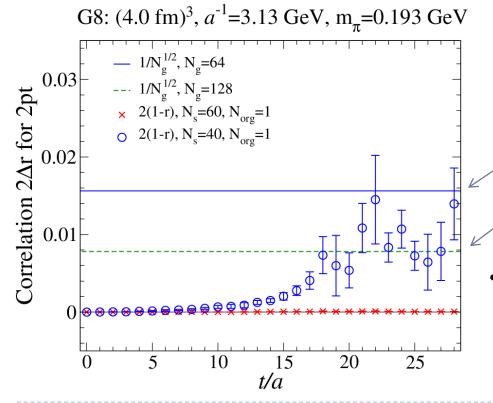
rgg': correlation between O(appx),g and O(appx),g'

Tuning and Correlation

Approximation

Luscher, 2004

- Relaxed GCR+Deflation field for preconditioning in solver algorithm.
- \triangleright Deflation space N_s is related to quality and cost of approximation.



Expected error reduction in AMA:

$$\frac{\sigma^{\text{imp}}}{\sigma} \simeq \sqrt{\frac{1}{N_G} + 2(1-r) + \frac{1}{N_g^2} \sum_{g \neq g'} r_{gg'}}$$

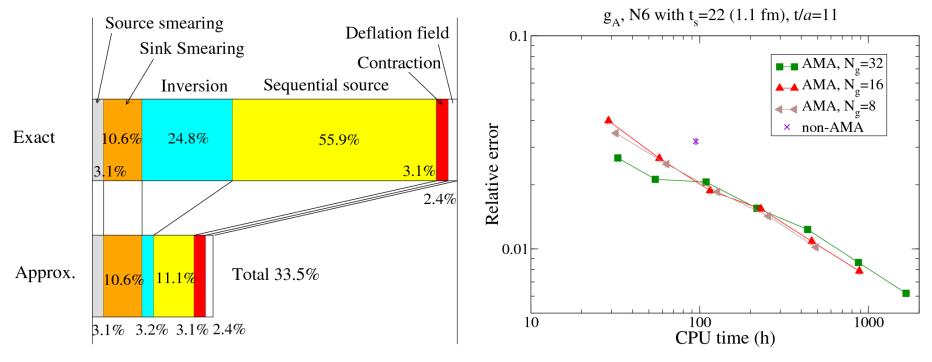
$$1/N_{G} = 1/64$$

$$1/N_{G} = 1/128$$

 At t ~ 24, size of correlation is similar to I/N_G, ⇒maximum point to reduce error

Performance test of AMA

Reduction of computational cost



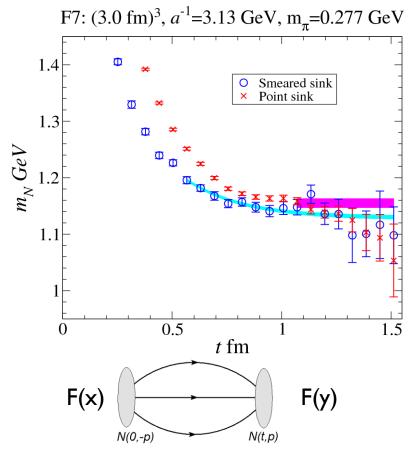
- Cost of computing quark propagator is reduced to 1/5 and less.
- Total speed-up is about factor 2 and more. (depending on lattice size and pion mass)

CLS config, $N_f = 2$ Wilson-clover fermion

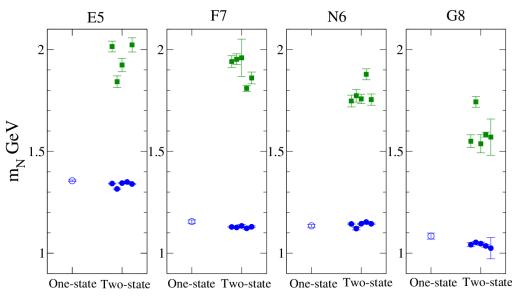
	Lattice	<i>a</i> (fm)	m_{π} (GeV)	N_{G}	t _s (fm)	#conf	#meas(*)
E5	64×32^3	0.063	0.456	64	0.82, 0.95, 1.13	~480	~30,000
	$(2.0 \text{ fm})^3$		$(m_{\pi}L=4.7)$		1.32	994	63,616
					1.51	1605	102,720
F7	96 × 48 ³	0.063	0.277	64	0.82, 0.95, 1.07	250	16,000
	$(3.0 \text{ fm})^3$		$(m_{\pi}L=4.2)$	128	1.20, 1.32	250	32,000
				192	1.51	250	64,000
N6	96 × 48 ³	0.05	0.332	32	0.9	110	3,520
	$(2.4 \text{ fm})^3$		(m _π L=4.1)	32	1.1,1.3	888	28,416
				32	1.5, 1.7	936	30,272
G8	128×64^3	0.063	0.193	80	0.88	184	14,720
	$(4.0 \text{ fm})^3$		$(m_{\pi}L=4.0)$	112	1.07	170	19,040
				160	1.26	178	28,480
				160	1.51	179	28,640

^{*} Effective statistics : #mes = $N_G \times \#$ conf

Nucleon mass and its excited state



F(x): Jacobian function with APE smearing link.



- The ground-state dominant, t = I--1.5 fm.
- Including the excited state, t = 0.5 -- 1.5 fm
- Fitting function

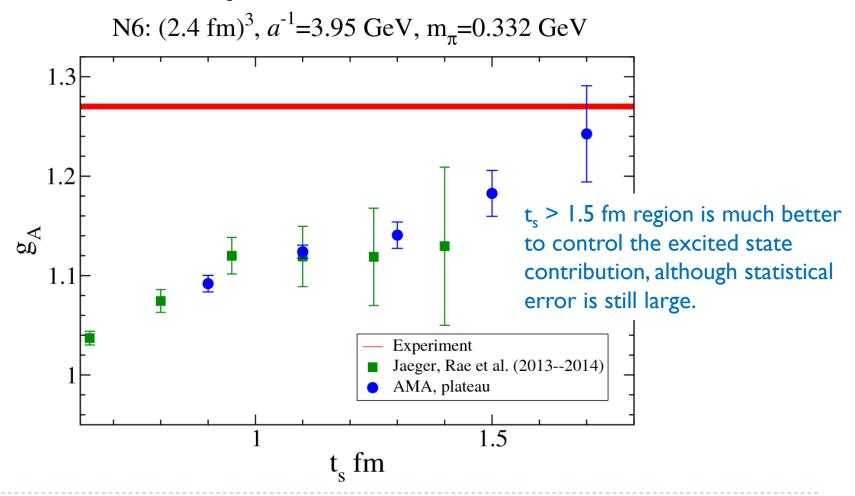
One-state: Ze-mt,

Two-state : $Z e^{-m t} + Z'e^{-m' t}$

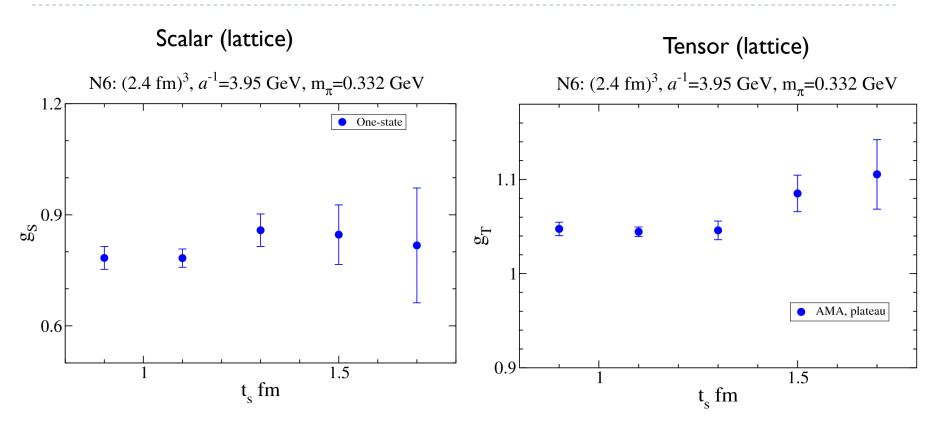
almost comparable with two fitting results

Axial charge

\blacktriangleright AMA results at $t_s > 1.5$ fm

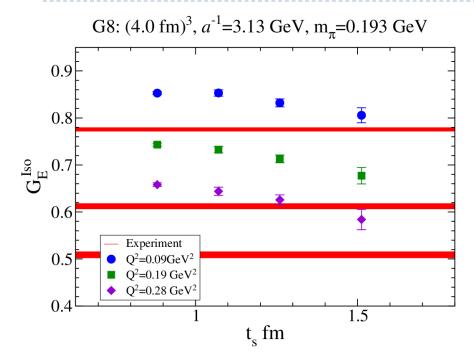


Scalar and tensor charge

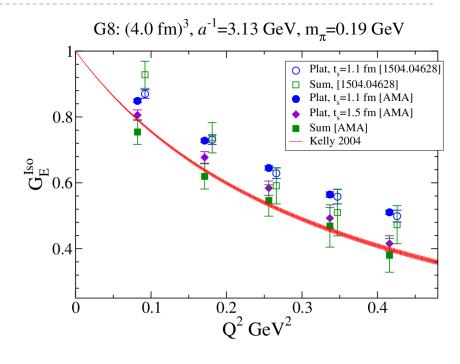


• There does not appear significant effect of excited state.

Isovector form factor

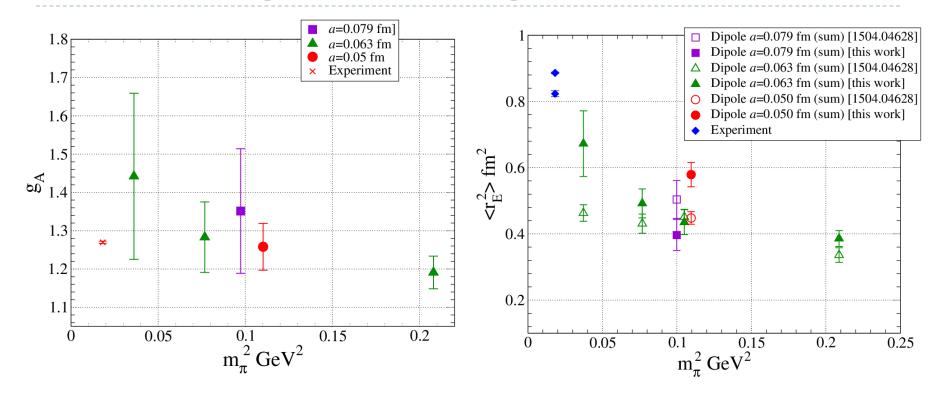


- From $t_s > 1$ fm, there is still tendency to decrease by ~5%.
- using at $t_s > 1.5$ fm is compatible with experimental value.



- Comparison with previous work on the same ensemble.
- Large discrepancy between plateau method at $t_s = 1.1$ fm and 1.5 fm, due to excited state contamination.
- Approaching to experimental value.

Axial charge and charge radius



- Analysis of axial charge and charge radius with large t_s up to 1.7 fm.
- Result has still large statistical error, even though statistics $O(10^5)$ is used.
- In $t_s = 1.1$ fm, there is still unsuppressed excited state effect, which may be one of the reason for large discrepancy from experiment \Rightarrow need more than 1.5 fm.
- Axial charge may not have strong m_{π} dependence, but $\langle r_E \rangle$ may have.

4. Summary

Summary

- All-mode-averaging technique is applied for reduction of statistical error in lattice QCD.
- High statistics calculation of nucleon form factor is performed in N_f =2 Wilson-clover at $Lm_\pi > 4$ with m_π = 0.19--0.46 GeV.
- $t_s > 1.5$ fm is required for small contribution of excited state contamination in axial charge and (iso)vector form factor.
- Axial charge and charge radius are approaching to experimental value.
- Feasible study for application to $N_f = 2+1$ CLS configurations with open boundary condition.

Thank you for your attention.

3. Lattice results (preliminary)

Extraction of g_A

- Ground and excited state ansatz
 - Ground state dominance (plateau method)

$$R_A(t,t_s) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)J_3(t,q)\mathcal{N}^{\dagger}(0,0)|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)\mathcal{N}^{\dagger}(0,0)|0\rangle} \simeq g_A, (t_s,t_s-t\gg 1)$$

- Evaluation from constant fitting for t with fixed t_s.
- To suppress the excited state contamination, measurement at large t_s is needed.
- First excited state (two-state)

PNDME(2014), RQCD(2014), ...

$$R_A(t,t_s) \simeq g_A + c\left(e^{-\Delta t_s} + e^{-\Delta(t_s-t)}\right)$$

- Δ is mass difference between ground and Ist excited state.
- Summation method

Capitani et al. PRD86 (2012)

$$R_A^{\text{sum}}(t_s) = \sum_{t=0}^{t_s} R_A(t, t_s) \simeq a_0 + t_s(g_A + O(e^{-\Delta t_s}))$$

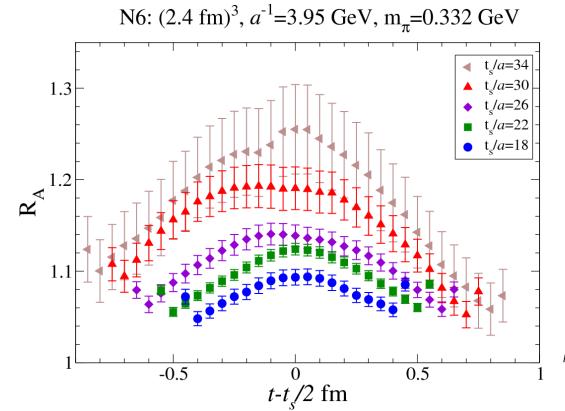
- Using summation in [0,t $_{\rm s}$] at fixed t $_{\rm s}$, the excited state effect is ~ $O(e^{-\Delta t_s})$
- g_A is given from t_s linear part at $t_s >> 1$.

3. Lattice results (preliminary)

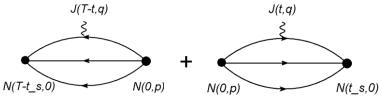
Axial charge

Single ratio of 2pt and 3pt with fixed t_s

$$R_A(t,t_s) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)J_3(t,q)\mathcal{N}^{\dagger}(0,0)|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)\mathcal{N}^{\dagger}(0,0)|0\rangle} \simeq g_A + c_1 e^{-\Delta t_s} + c_2 e^{-\Delta'(t_s-t)}$$



- Computation of 3pt and 2pt function at zero momentum with spin projection P.
- Signal is regarded as plateau.
- There is significant size of excited state (2^{nd} and 3^{rd} terms) \rightarrow fitting including 1^{st} excited state
- Forward and backward averaging



Isovector form factor

Ratio with momentum transition

$$R_{G}(t,t_{s}) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_{s},p_{1})J_{\mu}(t,q)\mathcal{N}^{\dagger}(0,p_{0})|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_{s},p_{0})\mathcal{N}^{\dagger}(0,p_{0})|0\rangle} K(p_{1},p_{0}) \simeq G_{X} + d_{1}e^{-\Delta t_{s}} + d_{2}e^{-\Delta'(t_{s}-t)}$$

$$K(p_{1},p_{0}) = \sqrt{\frac{C_{\mathrm{2pt}}^{\mathrm{lc}}(p_{1},t_{s}-t)C_{\mathrm{2pt}}^{\mathrm{sm}}(p_{0},t)C_{\mathrm{2pt}}^{\mathrm{lc}}(p_{0},t_{s})}{C_{\mathrm{2pt}}^{\mathrm{lc}}(p_{0},t_{s}-t)C_{\mathrm{2pt}}^{\mathrm{sm}}(p_{1},t)C_{\mathrm{2pt}}^{\mathrm{lc}}(p_{1},t_{s})}},$$

- The ratio consists of 3pt and 2pt, with combination of local "lc" and smeared "sm" sink.
- Matrix element with Sachs form factor

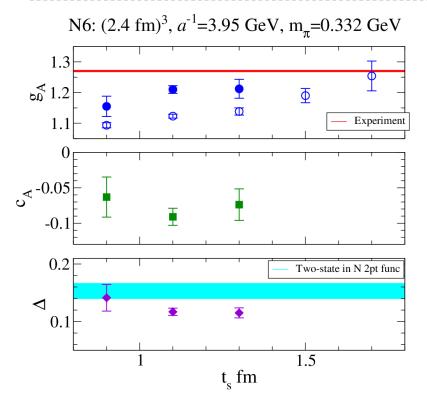
$$\langle N(\vec{p}_1)|J_{\mu}|N(\vec{p}_0)\rangle = \bar{u}(p_1)\Big[F_1^v(q^2)\gamma_{\mu} + F_2q_{\nu}\sigma_{\mu\nu}/2m_N\Big]u_N(p_0)$$

$$G_E = F_1 - \frac{q^2}{4m_N^2}F_2, G_M = F_1 + F_2$$

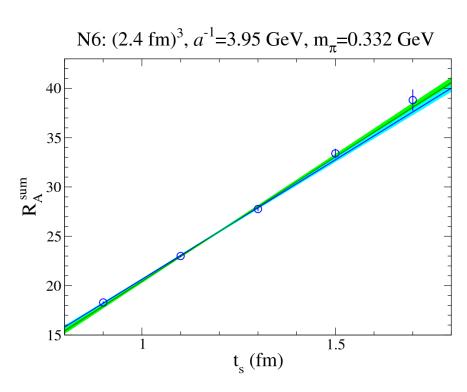
- Form factor G_X as a function of q^2 , $q = p_1 p_0$, in which $p_1 = (0, m_N) p_0 = (p, E)$ are used.
- Systematic study of excited state contamination with plateau and summation method is necessary.

3. Lattice results (preliminary): axial charge

Two state and summation method



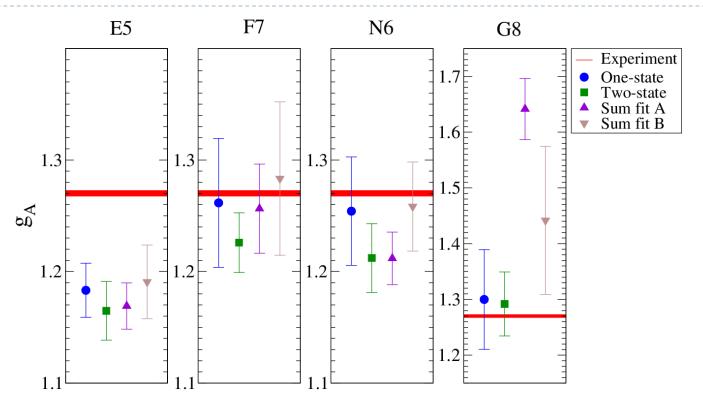
- After correction to excited state, g_A increases, and in agreement with plateau method in $t_s > 1.5$ fm.
- Mass difference Δ is compatible with two state fit of 2pt function.



- Linear behavior which is consistent with linear ansatz as expected.
- Comparison between two fitting range:
 t_s = (fit A)[0.9, 1.7], (fit B)[1.1, 1.7]
 ⇒ estimate of systematic uncertainty

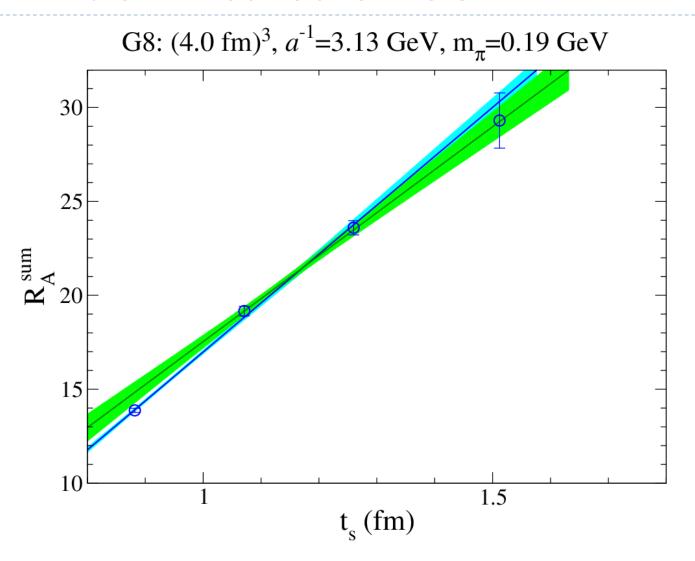
3. Lattice results (preliminary): axial charge

Comparison



- Four methods provide comparable result except for G8 ensemble at m_{π} = 0.19 GeV .
- On G8 summation method with fit A (including short t_s) is discrepancy from others \rightarrow expect systematic uncertainty in linear fit function.
- Finite pion mass effect of g_A is rather mild.

Summation method on G8



t dependence of G_E

