Determination of strangeness using data from neutrino experiments and hadron collider

Investigations into the Strange Sea Quark Distribution

Kristin Lohwasser EPS, Vienna, 24th July 2015

Based on:

Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data S. Alekhin, J. Blümlein, L. Caminada, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte

The strange sea quark puzzle

> Strange sea quarks only weakly constrained by HERA data

LHC data seems to suggest enhancement of strange sea quarks compared to expectations from fixed target experiments: ATLAS fit to W/Z data [Phys. Rev. D85 (2012) 072004, Phys.Rev.Lett. 109 (2012) 012001]

... but not confirmed by CMS data [Phys. Rew. D 90 (2014) 032004]

- Currently among largest sources of uncertainties on W mass measurements at the LHC [ATL-PHYS-PUB-2014-015]
- Investigate these discrepancies and the consistency of the measurements in a joint QCD analysis with data from Fixed-target and Collider Data

The fixed-target data: Neutrino scattering off Fe-target

> NuTeV and CCFR [Phys.Rev. D64, 112006 (2001)]

Measurement of absolute differential di-muon cross-section $\sigma_{_{\mu\mu}}/dxdy$ Minimal muon energy threshold of 5 GeV

> NOMAD [Nucl.Phys. B876, 339 (2013)]

Measurement of ratio $R_{\mu\mu} = \sigma_{\mu\mu}/CC$ (inc. charged current cross-section) as function of E, x and partonic center-of-mass, \sqrt{s} \rightarrow cancellation of uncertainties including nuclear corrections

Minimal muon energy threshold 3 GeV

→ larger phase space reduces extrapolation (previous data) reducing sensitivity to charm quark fragmentation but inclusive branching ratio B_µ requires still extra effort (backup slides)

Increased data set

 \rightarrow 3 x the statistics of NuTeV and CCFR data sets

The fixed-target data: Charm production in emulsions

> CHORUS [New J.Phys. 13,093002 (2011)]

Measurement of ratio $R_c = \sigma_c/CC$ (inc. charged current cross-section) with the total charm cross section σ_c as function of the neutrino energy E

 \rightarrow Ratio cancels uncertainties including nuclear corrections

direct detection of charmed hadrons and their decays \rightarrow measurement of visible neutrino energy and charm decay length \rightarrow no dependence on branching ratio B_{μ}

no definite energy threshold, but lower energy resolution \rightarrow reducing even further sensitivity to charm quark fragmentation

Total of 2013 events \rightarrow low statistics

restriction on the kinematic region used for analysis of $Q^2 > 1$ GeV

The collider data: LHC measurements of W+charm

Detection of associated charm quark by semi-leptonic decay into muon or charmed hadron in various decay channels

ATLAS [JHEP 05, 068 (2014)]

Measurement of $|\eta_{\ell}|$ cross section up to 2.5 **at hadron level** compared to prediction using aMC@NLO (NLO in W+c)

minimum lepton p_{T} of 20 GeV

CMS [JHEP 02, 013 (2014)]

Measurement of $|\eta_{\ell}|$ cross section up to 2.1 **at parton level** compared to prediction using MCFM interfaced to APPLGRID

minimum lepton p_{T} of 35 GeV

Further input data sets

- Deep inelastic scattering (DIS) neutral current (NC) inclusive production
- DIS charm production
- Fermilab fixed-target Drell-Yan (DY) FNAL-E-605 and FNAL-E-866

> LHC DY

Study the effect of the new data with strange sensitivity

Investigation into the impact of new data

> Impact of single data sets

NuTeV/CCFR + 1) NOMAD

2) CHORUS

3) **CMS**

> Combined Impact of new data sets

NuTeV/CCFR +

- 4) CHORUS + NOMAD
- \rightarrow impact of (anti)-neutrino induced charm data

5) ATLAS + CMS

→ consistency check in view of different strange distributions obtained by experiments

6) CHORUS + ATLAS + CMS

 \rightarrow impact data sets independent of semi-leptonic branching ratio B_{μ}

Fit ingredients and data treatment

> QCD to good approximation at NNLO accuracy

- \rightarrow NNLO evolution
- \rightarrow NNLO massless DIS and DY coefficient functions
- → NLO+massive DIS coefficient functions (fixed flavor number scheme) NLO + NNLO threshold corrections for neutral current (NC) NNLO description of charge current (CC) above Q ≫ m_{charm} running masses (MS scheme of heavy-quark masses)
- \rightarrow NNLO exclusive DY (DYNNLO 1.3 / FEWZ 3.1)

> Deuteron corrections in DIS

- \rightarrow Fermi motion, off-shell effects
- > Power corrections in DIS
 - \rightarrow target mass effects
 - \rightarrow dynamical twist-4 terms

For ATLAS and CMS data, a **fast interpolation grid** is used Phys.Rev. D89, 054028 (2014)

- > Starting scale $Q_0 = 3 \text{ GeV}$
- > Strange parametrization $s(x,\mu_0) = A_s x^{a_s} (1-x)^{b_s}$

1) NuTeV/CCFR + NOMAD

 μ =3 GeV, n_f=3

 \rightarrow largest effect at high-x due to better coverage of NOMAD

 $\rightarrow \chi^2$ /NDP = 49 / 48 (number of data points)

 \rightarrow Some deviations of partial fits from total fit – but all within uncertainty

2+4) NuTeV/CCFR + CHORUS (+NOMAD)

 $\rightarrow \chi^2/\text{NDP} = 5.9 / 6$ (number of data points) \rightarrow CHORUS data somewhat higher than fits

3) NuTeV/CCFR + CMS

Strange slightly enhanced for CMS data

➤ Enhancement increases if only CMS or CMS+CHORUS are used poorly constrained strange → fix low-x strange exponent a_s=-0.234±0.036 from all neutrino data for fit stability

 \rightarrow Extracted strange suppression consistent with previous CMS result

5) ATLAS + CMS

> Strange suppression

 \rightarrow Quantifies strange quark distribution compared to \overline{d} -valence

$$r_{s}(x,\mu^{2}) = \frac{s(x,\mu^{2}) + \overline{s}(x,\mu^{2})}{2\overline{d}(x,\mu^{2})}$$

> Difference in r_s determined from fits of either experiement

 \rightarrow Depends on parametrisation, high-*x* region not covered by data

5) ATLAS + CMS

> ATLAS data well described by fits using CHORUS+CMS data

- $\rightarrow \chi^2/\text{NDP} = 34.5 / 30$
- \rightarrow Data are consistent!

ATLAS (7 TeV, 4.6 1/fb)

6) CHORUS + ATLAS + CMS versus NuTeV/CCFR+NOMAD

> Data without reliance on ratio B_n generally increases strangeness

Largest pull from highest |η,|-bin of ATLAS experiment

> Strange suppression:

This analysis $r_s = 0.56 \pm 0.04$

ATLAS profiling of HERAPDF

$$r_s = 0.96 \,{}^{+0.16}_{-0.18} \,{}^{+0.21}_{-0.24}$$

Correlation of strange with d-valence: Larger strangeness compensated in ATLAS analysis by x(d-u) For this analysis constrained by FNAL-E-866 data

Some discrepancies in $x(\overline{d}-\overline{u})$

Correlation of strange with d-valence leads to discrepancies with FNAL-E-866 experiment

 $x(\overline{d}-\overline{u}) \sim 0$ for other fits / data

Conclusions

- Investigation into strange quark content of the proton → Addition of new neutrino and collider data sets
- Little impact on central value due to higher statistics neutrino-Fe data (NOMAD)
- Strangeness enhanced by 20% for data not relying on semi-leptonic branching ratio B_n
 - \rightarrow for both emulsion-neutrino and LHC collider data
- > Inclusion of ATLAS and CMS data in one fit without problems
 - \rightarrow data fully compatible
 - \rightarrow highest ATLAS of $|\eta_{\ell}|$ -bin with most effect

> 3% uncertainty on LHC measurements needed to improve strange fit

Backup

First picture to appear when you google "vienna strange"

Kristin Lohwasser | Determination of strangeness using the data from neutrino experiments and hadron collider | 24.7.2015 | Page 17

Backup: Energy-dependent branching ratio

> Branching ratio depends on semi-leptonic branching fractions and production fractions, which are dependent on neutrino energy

$$B_{\mu} = \sum_{h} B^{h}_{\mu} f_{h}(E_{\nu})$$

Fitted simultaneously with PDFs with constraints from emulsion data

$$B_{\mu}(E_{\nu}) = \sum_{h} r^{h}(E_{\nu}) B_{\mu}^{h} = a/(1+b/E_{\nu})$$

$$B_{\mu}(E_{\nu}) = \frac{B_{\mu}^{(0)}}{1 + B_{\mu}^{(1)}/E_{\nu}}$$

